AIM: This study aims to investigate the genetic polymorphisms of CYP3A5 among the Orang Asli in Peninsular Malaysia using a next generation sequencing platform.
METHODS: Genomic DNAs were extracted from blood samples of the three main Orang Asli tribes and whole-genome sequencing was performed.
RESULTS: A total of 61 single nucleotide polymorphisms were identified and all the SNPs were located in introns except rs15524, which is in the 3'UTR, and 11 of these polymorphisms were novel. Two allelic variants and three genotypes were identified in the Orang Asli. The major allelic variant was the non-functional CYP3A5*3 (66.4%). The percentages of Orang Asli with CYP3A5*3/*3 (47.2%) and CYP3A5*1/*3 (38.1%) genotypes are more than twice the percentage of Orang Asli with CYP3A5*1/*1 (14.8%) genotype. Almost half of the Orang Asli harboured CYP3A5 non-expressor genotype (CYP3A5*3/*3).
CONCLUSIONS: The predominance of the CYP3A5 non-expressor genotype among the Orang Asli was unravelled and the findings in this study may serve as a guide for the optimisation of pharmacotherapy for the Orang Asli community.
AIMS: (1) To investigate the association between birth weight and anthropometric measurements during adulthood; (2) to study the genetic and environmental influences on body measures including birth weight, weight and height among twins; and (3) to assess the variation in heritability versus environment among two cohorts of twins who lived in different geographical areas.
SUBJECTS AND METHODS: Twins were collected from two twin registers. Data on birth weight, adult weight and height in 430 MZ and 170 DZ twins living in two geographically distinct parts of the world were collected. A genetic analysis was performed using MX software.
RESULTS: Birth weight was associated with weight, height and BMI. Both MZ and DZ twins with low birth weight had shorter height during their adult life (p = 0.001), but only MZ twins with lower birth weight were lighter at adulthood (p = 0.001). Intra-pair differences in birth weight were not associated with differences in adult height (p = 0.366) or weight (p = 0.796). Additive genetic effects accounted for 53% of the variance in weight, 43% in height and 55% in birth weight. The remaining variance was attributed to unique environmental effects (15% for weight, 13% for height and 45% for birth weight and only 16% for BMI). Variability was found to be different in the two cohorts. The best fitting model for birth weight and BMI was additive genetic and non-shared environment and for weight and height was additive genetic, non-shared environment (plus common Environment).
CONCLUSIONS: Data suggests that the association between weight at birth and anthropometric measures in later life is influenced by both genetic and environmental factors. Living in different environments can potentially relate to variation found in the environment.
AIM: This study aimed to compare the performance of BMI, waist circumference (WC) and waist-to-height ratio (WtHR) in predicting Malaysians with excess body fat defined by dual-energy X-ray absorptiometry (DXA).
SUBJECTS AND METHODS: A total of 399 men and women aged ≥40 years were recruited from Klang Valley, Malaysia. The body composition of the subjects, including body fat percentage, was measured by DXA. The weight, height, WC and WHtR of the subjects were also determined.
RESULTS: BMI [sensitivity = 55.7%, specificity = 86.1%, area under curve (AUC) = 0.709] and WC (sensitivity = 62.7%, specificity = 90.3%, AUC = 0.765) performed moderately in predicting excess adiposity. Their performance and sensitivity improved with lower cut-off values. The performance of WHtR (sensitivity = 96.6%, specificity = 36.1, AUC = 0.664) was optimal at the standard cut-off value and no modification was required.
CONCLUSION: The performance of WC in identifying excess adiposity was greater than BMI and WHtR based on AUC values. Modification of cut-off values for BMI and WC could improve their performance and should be considered by healthcare providers in screening individuals with excess adiposity.
OBJECTIVE: The main focus of this review is to discuss and summarise the major risk factors associated with urbanisation that affect human gut microbiota thus affecting human health.
METHODS: Multiple medical literature databases, namely PubMed, Google, Google Scholar, and Web of Science were used to find relevant materials for urbanisation and its major factors affecting human gut microbiota/microbiome. Both layman and Medical Subject Headings (MeSH) terms were used in the search. Due to the scarcity of the data, no limitation was set on the publication date. Relevant materials in the English language which include case reports, chapters of books, journal articles, online news reports and medical records were included in this review.
RESULTS: Based on the data discussed in the review, it is quite clear that urbanisation and its associated factors have long-standing effects on the human gut microbiota that result in alterations of gut microbial diversity and composition. This is a matter of serious concern as chronic inflammatory diseases are on the rise in urbanised societies.
CONCLUSION: A better understanding of the factors associated with urbanisation will help us to identify and implement new biological and social approaches to prevent and treat diseases and improve health globally by deepening our understanding of these relationships and increasing studies across urbanisation gradients.HIGHLIGHTSHuman gut microbiota have been linked to almost every important function, including metabolism, intestinal homeostasis, immune system, biosynthesis of vitamins, brain processes, and behaviour.However, dysbiosis i.e., alteration in the composition and diversity of gut microbiota is associated with the pathogenesis of many chronic conditions.In the 21st century, urbanisation represents a major demographic shift in developed and developing countries.During this period of urbanisation, humans have been exposed to many environmental exposures, all of which have led to the dysbiosis of human gut microbiota.The main focus of the review is to discuss and summarise the major risk factors associated with urbanisation and how it affects the diversity and composition of gut microbiota which ultimately affects human health.