Displaying all 8 publications

Abstract:
Sort:
  1. Safdar A, Zakaria R, Aziz CBA, Rashid U, Azman KF
    Biogerontology, 2020 04;21(2):203-216.
    PMID: 31792648 DOI: 10.1007/s10522-019-09854-x
    One of the most significant hallmarks of aging is cognitive decline. D-galactose administration may impair memory and mimic the effects of natural aging. In this study, the efficiency of goat milk to protect against memory decline was tested. Fifty-two male Sprague-Dawley rats were randomly divided into four groups: (i) control group, (ii) goat milk treated group, (iii) D-galactose treated group, and (iv) goat milk plus D-galactose treated group. Subcutaneous injections of D-galactose at 120 mg/kg and oral administrations of goat milk at 1 g/kg were chosen for the study. Goat milk and D-galactose were administered concomitantly for 6 weeks, while the control group received saline. After 6 weeks, novel object recognition and T-maze tests were performed to evaluate memory of rats. Following behavioral tests, the animals were sacrificed, and right brain homogenates were analyzed for levels of lipid peroxidation, antioxidant enzymes and neurotrophic factors. The left brain hemisphere was used for histological study of prefrontal cortex and hippocampus. There was a significant memory impairment, an increase in oxidative stress and neurodegeneration and a reduction in antioxidant enzymes and neurotrophic factors levels in the brain of D-galactose treated rats compared to controls. Goat milk treatment attenuated memory impairment induced by D-galactose via suppressing oxidative stress and neuronal damage and increasing neurotrophic factors levels, thereby suggesting its potential role as a geroprotective food.
  2. Azman KF, Zakaria R
    Biogerontology, 2019 12;20(6):763-782.
    PMID: 31538262 DOI: 10.1007/s10522-019-09837-y
    To facilitate the process of aging healthily and prevent age-related health problems, efforts to properly understand aging mechanisms and develop effective and affordable anti-aging interventions are deemed necessary. Systemic administration of D-galactose has been established to artificially induce senescence in vitro and in vivo as well as for anti-aging therapeutic interventions studies. The aim of this article is to comprehensively discuss the use of D-galactose to generate a model of accelerated aging and its possible underlying mechanisms involved in different tissues/organs.
  3. Khor ES, Wong PF
    Biogerontology, 2020 10;21(5):517-530.
    PMID: 32246301 DOI: 10.1007/s10522-020-09876-w
    Accumulation of senescent cells in vascular endothelium is known to contribute to vascular aging and increases the risk of developing cardiovascular diseases. The involvement of classical pathways such as p53/p21 and p16/pRB in cellular senescence are well described but there are emerging evidence supporting the increasingly important role of mammalian target of rapamycin (MTOR) as driver of cellular senescence via these pathways or other effector molecules. MicroRNAs (miRNAs) are a highly conserved group of small non-coding RNAs (18-25 nucleotides), instrumental in modulating the expression of target genes associated with various biological and cellular processes including cellular senescence. The inhibition of MTOR activity is predominantly linked to cellular senescence blunting and prolonged lifespan in model organisms. To date, known miRNAs regulating MTOR in endothelial cell senescence remain limited. Herein, this review discusses the roles of MTOR and MTOR-associated miRNAs in regulating endothelial cell senescence, including the crosstalk between MTOR Complex 1 (MTORC1) and cell cycle pathways and the emerging role of MTORC2 in cellular senescence. New insights on how MTOR and miRNAs coordinate underlying molecular mechanisms of endothelial senescence will provide deeper understanding and clarity to the complexity of the regulation of cellular senescence.
  4. Ahmed IA, Mikail MA, Zamakshshari N, Abdullah AH
    Biogerontology, 2020 06;21(3):293-310.
    PMID: 32162126 DOI: 10.1007/s10522-020-09865-z
    The deterioration of the skin morphology and physiology is the first and earliest obvious harbinger of the aging process which is progressively manifested with increasing age. Such deterioration affects the vital functions of the skin such as homeodynamic regulation of body temperature, fluid balance, loss of electrolytes and proteins, production of vitamin D, waste removal, immune surveillance, sensory perception, and protection of other organs against deleterious environmental factors. There are, however, harmful chemicals and toxins found in everyday cosmetics that consumers are now aware of. Thus, the natural beauty industry is on the rise with innovative technology and high-performance ingredients as more consumers demand healthier options. Therefore, the aims of this review are to give some critical insights to the effects of both intrinsic and extrinsic factors on excessive or premature skin aging and to elaborate on the relevance of natural beauty and natural anti-aging skincare approaches that will help consumers, scientists and entrepreneurs make the switch. Our recent investigations have shown the potential and relevance of identifying more resources from our rich natural heritage from various plant sources such as leaves, fruits, pomace, seeds, flowers, twigs and so on which can be explored for natural anti-aging skincare product formulations. These trending narratives have started to gain traction among researchers and consumers owing to the sustainability concern and impact of synthetic ingredients on human health and the environment. The natural anti-aging ingredients, which basically follow hormetic pathways, are potentially useful as moisturizing agents; barrier repair agents; antioxidants, vitamins, hydroxy acids, skin lightening agents, anti-inflammatory ingredients, and sunblock ingredients.
  5. Xiang X, Xie L, Lin J, Pare R, Huang G, Huang J, et al.
    Biogerontology, 2023 Oct;24(5):783-799.
    PMID: 36683095 DOI: 10.1007/s10522-023-10015-4
    Atherosclerosis threatens human health by developing cardiovascular diseases, the deadliest disease world widely. The major mechanism contributing to the formation of atherosclerosis is mainly due to vascular endothelial cell (VECs) senescence. We have shown that 17β-estradiol (17β-E2) may protect VECs from senescence by upregulating autophagy. However, little is known about how 17β-E2 activates the autophagy pathway to alleviate cellular senescence. Therefore, the aim of this study is to determine the role of estrogen receptor (ER) α and β in the effects of 17β-E2 on vascular autophagy and aging through in vitro and in vivo models. Hydrogen peroxide (H2O2) was used to establish Human Umbilical Vein Endothelial Cells (HUVECs) senescence. Autophagy activity was measured through immunofluorescence and immunohistochemistry staining of light chain 3 (LC3) expression. Inhibition of ER activity was established using shRNA gene silencing and ER antagonist. Compared with ER-β knockdown, we found that knockdown of ER-α resulted in a significant increase in the extent of HUVEC senescence and senescence-associated secretory phenotype (SASP) secretion. ER-α-specific shRNA was found to reduce 17β-E2-induced autophagy, promote HUVEC senescence, disrupt the morphology of HUVECs, and increase the expression of Rb dephosphorylation and SASP. These in vitro findings were found consistent with the in vivo results. In conclusion, our data suggest that 17β-E2 activates the activity of ER-α and then increases the formation of autophagosomes (LC3 high expression) and decreases the fusion of lysosomes with autophagic vesicles (P62 low expression), which in turn serves to decrease the secretion of SASP caused by H2O2 and consequently inhibit H2O2-induced senescence in HUVEC cells.
  6. Khor YS, Wong PF
    Biogerontology, 2024 Feb;25(1):23-51.
    PMID: 37646881 DOI: 10.1007/s10522-023-10059-6
    FOXO3 is a member of the FOXO transcription factor family and is known for regulating cellular survival in response to stress caused by various external and biological stimuli. FOXO3 decides cell fate by modulating cellular senescence, apoptosis and autophagy by transcriptional regulation of genes involved in DNA damage response and oxidative stress resistance. These cellular processes are tightly regulated physiologically, with FOXO3 acting as the hub that integrates signalling networks controlling them. The activity of FOXO3 is influenced by post-translational modifications, altering its subcellular localisation. In addition, FOXO3 can also be regulated directly or indirectly by microRNAs (miRNAs) or vice versa. This review discusses the involvement of various miRNAs in FOXO3-driven cellular responses such as senescence, apoptosis, autophagy, redox and inflammation defence. Given that these responses are linked and influence cell fate, a thorough understanding of the complex regulation by miRNAs would provide key information for developing therapeutic strategy and avoid unintended consequences caused by off-site targeting of FOXO3.
  7. Hemagirri M, Chen Y, Gopinath SCB, Adnan M, Patel M, Sasidharan S
    Biogerontology, 2024 Apr 15.
    PMID: 38619670 DOI: 10.1007/s10522-024-10104-y
    Polyalthia longifolia is well-known for its abundance of polyphenol content and traditional medicinal uses. Previous research has demonstrated that the methanolic extract of P. longifolia leaves (PLME, 1 mg/mL) possesses anti-aging properties in Saccharomyces cerevisiae BY611 yeast cells. Building on these findings, this study delves deeper into the potential antiaging mechanism of PLME, by analyzing the transcriptional responses of BY611 cells treated with PLME using RNA-sequencing (RNA-seq) technology. The RNA-seq analysis results identified 1691 significantly (padj 
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links