Oestrogens play an important role in the development of breast cancer. A very important source of active oestrogens in the breast is oestrone sulphate which is converted to oestrone by oestrone sulphatase. The aim of this study was to assess the effects of IGF-I and IGF-II on oestrone sulphatase activity in, as well as cell growth of, MCF-7 and MDA-MB-231 human breast cancer cell lines. Cells were grown in supplemented DMEM and treated with varying concentrations of IGFs. At the end of the treatment period, intact cell monolayers were washed and assayed for oestrone sulphatase activity and the number of cell nuclei determined on a Coulter Counter. Oestrone sulphatase activity was significantly stimulated by IGF-I and II at concentrations of 100 ng/ml and 200 ng/ml in MCF-7 cells. IGF-I had no effect on oestrone sulphatase activity in MDA-MB-231 cells over the range of concentrations tested. Significant inhibition of oestrone sulphatase was observed in MDA-MB-231 cells at higher concentrations of IGF-II (50 ng/ml, 100 ng/ml and 200 ng/ml). Both IGF-I and IGF-II at higher concentrations (100 ng/ml and 200 ng/ml) significantly inhibited MCF-7 and stimulated MDA-MB-231 cell growth. Since IGF-I and II have effects on cell growth and oestrone sulphatase activity in breast cancer cell lines they may play a role in the development and progression of human breast cancer.
Neurodegeneration is typically preceded by neuroinflammation generated by the nervous system to protect itself from tissue damage, however, excess neuroinflammation may inadvertently cause more harm to the surrounding tissues. Attenuating neuroinflammation with non‑steroidal anti‑inflammatory drugs can inhibit neurodegeneration. However, such treatments induce chronic side effects, including stomach ulcers. Madecassoside, a triterpene derived from Centella asiatica, is considered to be an alternative treatment of inflammation. In the present study, the anti‑neuroinflammatory properties of madecassoside were assessed in BV2 microglia cells, which were pre‑treated with madecassoside at a maximum non‑toxic dose (MNTD) of 9.50 µg/ml and a ½ MNTD of 4.75 µg/ml for 3 h and stimulated with 0.1 µg/ml lipopolysaccharide (LPS). The effect of madecassoside was assessed by determining reactive oxygen species (ROS) levels in all groups. Furthermore, the expression of pro‑ and anti‑neuroinflammatory genes and proteins were analyzed using reverse transcription‑quantitative polymerase chain reaction and western blotting, respectively. The results demonstrated that ROS levels in cells treated with the MNTD of madecassoside were significantly reduced compared with cells treated with LPS alone (P<0.05). The expression of pro‑neuroinflammatory genes, including inducible nitric oxide synthase, cyclooxygenase‑2, signal transducer and activator of transcription 1 and nuclear factor‑κB, were significantly downregulated in a dose‑independent manner following treatment with madecassoside. Conversely, the anti‑neuroinflammatory component heme oxygenase 1 was significantly upregulated by 175.22% in the MNTD‑treated group, compared with cells treated with LPS alone (P<0.05). The gene expression profiles of pro‑ and anti‑inflammatory genes were also consistent with the results of western blotting. The results of the present study suggest that madecassoside may be a potent anti‑neuroinflammatory agent. The antioxidative properties of madecassoside, which serve a major role in anti‑neuroinflammation, indicate that this compound may be a functional natural anti‑neuroinflammatory agent, therefore, further in vivo or molecular studies are required.
Imatinib mesylate is an anti‑neoplastic targeted chemotherapeutic agent, which can inhibit tyrosine kinase receptors, including BCR‑ABL, platelet‑derived growth factor receptors (PDGFRs) and c‑Kit. Cellular processes, including differentiation, proliferation and survival are regulated by these receptors. The present study aimed to evaluate the antiproliferative effects of imatinib mesylate, and its effects on apoptotic induction and cell cycle arrest in breast cancer cell lines. In addition, the study aimed to determine whether the effects of this drug were associated with the mRNA and protein expression levels of PDGFR‑β, c‑Kit, and their corresponding ligands PDGF‑BB and stem cell factor (SCF), which may potentially modulate cell survival and proliferation. To assess the antiproliferative effects of imatinib mesylate, an MTS assay was conducted following treatment of cells with 2‑10 µM imatinib mesylate for 96, 120 and 144 h; accordingly the half maximal inhibitory concentration of imatinib mesylate was calculated for each cell line. In addition, the proapoptotic effects and cytostatic activity of imatinib mesylate were investigated. To evaluate the expression of imatinib‑targeted genes, PDGFR‑β, c‑Kit, PDGF‑BB and SCF, under imatinib mesylate treatment, mRNA expression was detected using semi‑quantitative polymerase chain reaction and protein expression was detected by western blot analysis in ZR‑75‑1 and MDA‑MB‑231 breast carcinoma cell lines. Treatment with imatinib mesylate suppressed cell proliferation, which was accompanied by apoptotic induction and cell cycle arrest in the investigated cell lines. In addition, PDGFR‑β, PDGF‑BB, c‑Kit and SCF were expressed in both breast carcinoma cell lines; PDGFR‑β and c‑Kit, as imatinib targets, were downregulated in response to imatinib mesylate treatment. The present results revealed that at least two potential targets of imatinib mesylate were expressed in the two breast carcinoma cell lines studied. In conclusion, the antiproliferative, cytostatic and proapoptotic effects of imatinib mesylate may be the result of a reduction in the expression of c‑Kit and PDGFR tyrosine kinase receptors, thus resulting in suppression of the corresponding ligand PDGF‑BB. Therefore, imatinib mesylate may be considered a promising target therapy for the future treatment of breast cancer.
Newcastle disease virus (NDV) AF2240 Malaysian strain is a very virulent avian virus. NDV strain AF2240 was previously demonstrated to induce apoptosis in human breast carcinoma MCF-7 cells. However, at which stage of the NDV life cycle apoptosis is induced and whether NDV replication and protein synthesis are involved in apoptosis induction have yet to be determined. In the present study, we investigated the time course of NDV strain AF2240 nucleoprotein (NP) gene expression and the early apoptotic signs in the form of activation of caspase-8 and mitochondrial transition pore opening. In addition, the induction of apoptosis by both ultraviolet-inactivated and cycloheximide-treated NDV-infected MCF-7 cells were examined. Our findings showed that NDV strain AF2240 induced apoptosis at 1 h post-infection (pi) through activation of mitochondrial transition pore opening and at 2 h through activation of caspase-8, while the NP gene was expressed at 6 h pi. The induced apoptosis was independent of both virus replication and protein synthesis. In conclusion, NDV strain AF2240 induces apoptosis at an early stage of its life cycle, possibly during virus binding or fusion with the cell membrane. The mitochondrial-related pathway may be the central activator in NDV strain AF2240-induced apoptosis.
MicroRNAs (miRNAs) are small noncoding RNAs that involved in various cancer-related cellular processes. Diverse studies on expression profiling of miRNAs have been performed and the data showed that some miRNAs are up-regulated or down-regulated in cancer. Until now, there are no data published on the miRNA expression in head and neck cancers from Malaysia. Hence, this study aimed to investigate potentially crucial miRNAs in head and neck cancer patients from Malaysian populations. A global miRNA profiling was performed on 12 samples of head and neck cancer tissue using microarray analysis followed by validation using real-time RT-PCR. Microarray analysis identified 10 miRNAs that could distinguish malignant head and neck cancer lesions from normal tissues; 7 miRNAs (hsa-miR-181a-2*, hsa-miR-29b-1*, hsa-miR-181a, hsa-miR-181b, hsa-miR-744, hsa-miR-1271 and hsa-miR-221*) were up-regulated while 3 miRNAs (hsa-miR-141, hsa-miR-95 and hsa-miR-101) were down-regulated. These miRNAs may contribute in a simple profiling strategy to identify individuals at higher risk of developing head and neck cancers, thus helping in the elucidation of the molecular mechanisms involved in head and neck cancer pathogenesis.
We have established 3 cell lines ORL-48, -115 and -136 from surgically resected specimens obtained from untreated primary human oral squamous cell carcinomas of the oral cavity. The in vitro growth characteristics, epithelial origin, in vitro anchorage independency, human papilloma-virus (HPV) infection, microsatellite instability status, karyotype and the status of various cell cycle regulators and gatekeepers of these cell lines were investigated. All 3 cell lines grew as monolayers with doubling times ranging between 26.4 and 40.8 h and were immortal. Karyotyping confirmed that these cell lines were of human origin with multiple random losses and gains of entire chromosomes and regions of chromosomes. Immunohistochemistry staining of cytokeratins confirmed the epithelial origin of these cell lines, and the low degree of anchorage independency expressed by these cell lines suggests non-transformed phenotypes. Genetic analysis identified mutations in the p53 gene in all cell lines and hypermethylation of p16INK4a in ORL-48 and -136. Analysis of MDM2 and EGFR expression indicated MDM2 overexpression in ORL-48 and EGFR overexpression in ORL-136 in comparison to the protein levels in normal oral keratinocytes. Analysis of the BAT-26 polyadenine repeat sequence and MLH-1 and MSH-2 repair enzymes demonstrated that all 3 cell lines were microsatellite stable. The role of HPV in driving carcinogenesis in these tumours was negated by the absence of HPV. Finally, analysis of the tissues from which these cell lines were derived indicated that the cell lines were genetically representative of the tumours, and, therefore, are useful tools in the understanding of the molecular changes associated with oral cancers.
Overexpression of c-myc protein and amplification of c-myc were investigated by immunohistochemistry and differential polymerase chain reaction (dPCR) in 440 formalin-fixed primary breast carcinoma tissues, respectively. Overexpression of c-myc was detected in 45% (199/440) and amplification of c-myc was observed in 25% (112/440) of the primary breast carcinomas. Immunolocalization of c-myc oncoprotein was demonstrated in 35% (8/23) of the comedo subtype, 17% (3/18) of the non-comedo subtype, 37% (15/41) of the comedo DCIS and 49% (20/41) of the adjacent invasive ductal carcinomas, 21% (4/19) of the non-comedo DCIS and 37% (7/19) of the adjacent invasive lesions, 49% (133/270) of the invasive ductal carcinomas, 33% (11/33) of the invasive lobular carcinomas, 29% (6/21) of the colloid carcinomas and 47% (7/15) of the medullary carcinomas. C-myc was amplified in 13% (3/23) of the comedo DCIS, 17% (7/41) of the comedo DCIS and 24% (10/41) of the adjacent invasive ductal carcinomas, 30% (82/270) of the invasive ductal carcinomas, 21% (7/33) of the invasive lobular carcinomas, 14% (3/21) of the colloid carcinomas and 24% (4/15) of the medullary carcinomas. Amplification of c-myc was noted in 16% (3/9) of the invasive ductal carcinomas but not in the adjacent non-comedo DCIS lesions. A significant association (P<0.05) was observed between in situ components and adjacent invasive lesions for c-myc expression and amplification. Overexpression of c-myc protein was significantly correlated with poorly differentiated (P<0.05) and high proliferation index (Ki-67) (P<0.05) tumors but not with lymph node metastases (P>0.05), patient age (P>0.05) and estrogen receptor status (P>0.05). Significant relationship was also noted between amplification of c-myc and absence of estrogen receptor (P<0.05), high histological grade (P<0.05) and high proliferation index (Ki-67) (P<0.05). No relationship was seen with nodal status (P>0.05) and patient age (P>0.05). Majority of the Malaysian female patients are from younger age group (<50 years old) but overexpression and amplification of c-myc was not statistically associated with patient age (P>0.05) indicating that these alterations may be independent events of patient age. The above observations suggest that overexpression and amplification of c-myc could play an important role in tumor progression from non-invasive to invasive and, also, it may have the potential as a marker of poor prognosis of breast cancer.
Amplification of int-2/FGF-3 gene was investigated by differential polymerase chain reaction (dPCR) in 440 archival primary breast carcinoma tissues. Of these, 23 were comedo ductal carcinoma in situ (DCIS), 18 were non-comedo DCIS, 41 were comedo DCIS with adjacent invasive ductal carcinomas, 19 were non-comedo DCIS with adjacent invasive ductal carcinomas, 270 were invasive ductal carcinomas, 33 were invasive lobular carcinomas, 21 were colloid carcinomas and 15 were medullary carcinomas. Int-2 was amplified in 22% (96/440) of the primary breast carcinomas. It was shown that int-2 was amplified in 13% (3/23) of the comedo DCIS, 17% (7/41) of the comedo DCIS and 29% (12/41) of the adjacent invasive ductal carcinomas, 26% (71/270) of the invasive ductal carcinomas, 18% (6/33) of the invasive lobular carcinomas, 10% (2/21) of the colloid carcinomas and 13% (2/15) of the medullary carcinomas. In contrast, int-2 was not amplified in non-comedo DCIS and invasive ductal carcinomas with adjacent non-comedo DCIS lesions. A significant association was observed between int-2 amplification in the in situ components and adjacent invasive lesion (P<0.05). All tumors with int-2 amplification in the in situ lesions (7/7) also demonstrated same degree of amplification in the adjacent invasive components. However, 9% (5/53) of the tumors with no amplified int-2 gene in the in situ components showed int-2 amplification in the adjacent invasive lesions. A significant relationship was noted between amplification of int-2 and lymph node metastases (P<0.05) and poorly differentiated tumors (P<0.05) but not with estrogen receptor status (P>0.05) and proliferation index (Ki-67 and PCNA) (P>0.05). In Malaysia, majority of the patients belong to younger age group (<50 years old) but a comparison of the age groups showed that the amplification of int-2 was not statistically associated with patient age (P>0.05). These observations indicate that amplification of int-2 tends to strengthen the view that int-2 may have the potential to be an indicator of poor prognosis regardless of the age of the patient. Moreover, the presence of int-2 amplification in preinvasive, preinvasive and adjacent invasive lesions, and invasive carcinomas suggest that int-2 could be a marker of genetic instability occurring in early and late stages of tumor development.
Gingival overgrowth is an undesirable outcome of systemic medication and is evidenced by the accretion of collagenous components in gingival connective tissues along with diverse degrees of inflammation. Phenytoin therapy has been found to induce the most fibrotic lesions in gingiva, cyclosporine caused the least fibrotic lesions, and nifedipine induced intermediate fibrosis in drug‑induced gingival overgrowth. In drug‑induced gingival overgrowth, efficient oral hygiene is compromised and has negative consequences for the systemic health of the patients. Toll‑like receptors (TLRs) are involved in the effective recognition of microbial agents and play a vital role in innate immunity and inflammatory signaling responses. TLRs stimulate fibrosis and tissue repairs in several settings, although with evident differences between organs. In particular, TLRs exert a distinct effect on fibrosis in organs with greater exposure to TLR ligands, such as the gingiva. Cumulative evidence from diverse sources suggested that TLRs can affect gingival overgrowth in several ways. Numerous studies have demonstrated the expression of TLRs in gingival tissues and suggested its potential role in gingival inflammation, cell proliferation and synthesis of the extracellular matrix which is crucial to the development of gingival overgrowth. In the present review, we assessed the role of TLRs on individual cell populations in gingival tissues that contribute to the progression of gingival inflammation, and the involvement of TLRs in the development of gingival overgrowth. These observations suggest that TLRs provide new insight into the connection among infection, inflammation, drugs and gingival fibrosis, and are therefore efficient therapeutic target molecules. We hypothesize that TLRs are critical for the development and progression of gingival overgrowth, and thus blocking TLR expression may serve as a novel target for antifibrotic therapy.
Influenza A virus is one of the most important health risks that lead to significant respiratory infections. Continuous antigenic changes and lack of promising vaccines are the reasons for the unsuccessful treatment of influenza. Statins are pleiotropic drugs that have recently served as anti-influenza agents due to their anti-inflammatory activity. In this study, the effect of simvastatin on influenza A-infected cells was investigated. Based on the MTT cytotoxicity test, hemagglutination (HA) assay and qPCR it was found that simvastatin maintained cell viability and decreased the viral load significantly as compared to virus-inoculated cells. The expression of important pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-6 and interferon-γ), which was quantified using ELISA showed that simvastatin decreased the expression of pro-inflammatory cytokines to an average of 2-fold. Furthermore, the modulation of actin filament polymerization was determined using rhodamine staining. Endocytosis and autophagy processes were examined by detecting Rab and RhoA GTPase protein prenylation and LC3 lipidation using western blotting. The results showed that inhibiting GTPase and LC3 membrane localization using simvastatin inhibits influenza replication. Findings of this study provide evidence that modulation of RhoA, Rabs and LC3 may be the underlying mechanisms for the inhibitory effects of simvastatin as an anti-influenza compound.
New drugs are continuously being developed for the treatment of patients with estrogen receptor-positive breast cancer. Thymoquinone is one of the drugs that exhibits anticancer characteristics based on in vivo and in vitro models. This study further investigates the effects of thymoquinone on human gene expression using cDNA microarray technology. The quantification of RNA samples was carried out using an Agilent 2100 Bioanalyser to determine the RNA integrity number (RIN). The Agilent Low Input Quick Amplification Labelling kit was used to generate cRNA in two-color microarray analysis. Samples with RIN >9.0 were used in this study. The universal human reference RNA was used as the common reference. The samples were labelled with cyanine-3 (cye-3) CTP dye and the universal human reference was labelled with cyanine-5 (cye-5) CTP dye. cRNA was purified with the RNeasy Plus Mini kit and quantified using a NanoDrop 2000c spectrophotometer. The arrays were scanned data analysed using Feature Extraction and GeneSpring software. Two-step qRT-PCR was selected to determine the relative gene expression using the High Capacity RNA-to-cDNA kit. The results from Gene Ontology (GO) analysis, indicated that 8 GO terms were related to biological processes (84%) and molecular functions (16%). A total of 577 entities showed >2-fold change in expression. Of these entities, 45.2% showed an upregulation and 54.7% showed a downregulation in expression. The interpretation of single experiment analysis (SEA) revealed that the cytochrome P450, family 1, subfamily A, polypeptide 1 (CYP1A1) and UDP glucuronosyltransferase 1 family, polypeptide A8 (UGT1A8) genes in the estrogen metabolic pathway were downregulated significantly by 43- and 11‑fold, respectively. The solute carrier family 7 (anionic amino acid transporter light chain, xc-system), member 11 (SLC7A11) gene in the interferon pathway, reported to be involved in the development of chemoresistance, was downregulated by 15‑fold. The interferon-induced protein with tetratricopeptide repeats (IFIT)1, IFIT2, IFIT3, interferon, α-inducible protein (IFI)6 (also known as G1P3), interferon regulatory factor 9 (IRF9, ISGF3), 2'-5'-oligoadenylate synthetase 1, 40/46 kDa (OAS1) and signal transducer and activator of transcription 1 (STAT1) genes all showed changes in expression following treatment with thymoquinone. The caspase 10, apoptosis-related cysteine peptidase (CASP10) gene was activated and the protein tyrosine phosphatase, receptor type, R (PTPRR) and myocyte enhancer factor 2C (MEF2C) genes were upregulated in the classical MAPK and p38 MAPK pathways. These findings indicate that thymquinone targets specific genes in the estrogen metabolic and interferon pathways.
Free radicals are widely known to be the major cause of human diseases such as neurodegenerative diseases, cancer, allergy and autoimmune diseases. Human cells are equipped with a powerful natural antioxidant enzyme network. However, antioxidants, particularly those originating from natural sources such as fruits and vegetables, are still considered essential. Rutin, a quercetin glycoside, has been proven to possess antioxidant potential. However, the neuroprotective effect of rutin in pheochromocytoma (PC-12) cells has not been studied extensively. Therefore, the present study was designed to establish the neuroprotective role of rutin as well as to elucidate the antioxidant mechanism of rutin in 6-hydroxydopamine (6-OHDA)-induced toxicity in PC-12 neuronal cells. PC-12 cells were pretreated with different concentrations of rutin for 4, 8 and 12 h and subsequently incubated with 6-OHDA for 24 h to induce oxidative stress. A significant cytoprotective activity was observed in rutin pretreated cells in a dose-dependent manner. Furthermore, there was marked activation of antioxidant enzymes including superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), and total glutathione (GSH) in rutin pretreated cells compared to cells incubated with 6-OHDA alone. Rutin significantly reduced lipid peroxidation in 6-OHDA-induced PC-12 cells. On the basis of these observations, it was concluded that the bioflavonoid rutin inhibited 6-OHDA-induced neurotoxicity in PC-12 cells by improving antioxidant enzyme levels and inhibiting lipid peroxidation.
The emergence of colorectal cancer in developed nations can be attributed to dietary habits, smoking, a sedentary lifestyle and obesity. Several treatment regimens are available for primary and metastatic colorectal cancer; however, these treatment options have had limited impact on cure and disease‑free survival, and novel agents need to be developed for treating colorectal cancer. Thus, the objective of this study was to explore the anticancer mechanism of a benzo(1,3)dioxol‑based derivative of sulfonamide. The compound's inhibitory effect on cell proliferation was determined using the MTT assay and the xCelligence RTDP machine. Alternations in the expression of Bcl‑2 and inhibitor of apoptosis protein families were detected by western blotting. Apoptotic marker protein expression, including cytochrome c and cleaved poly(ADP‑ribose)polymerase was measured in the cytosolic extract of cells. Apoptosis and necrosis were detected by flow cytometry and immunofluorescence. Reactive oxygen species (ROS), and activation of caspase‑3 and caspase‑7 were measured using flow cytometry. Activation of the JNK pathway was detected by western blotting. We investigated the molecular mechanism of action of the sulfonamide derivative on colorectal cancer cells and found that the compound possesses a potent anticancer effect, which is primarily exerted by inducing apoptosis and necrosis. Interestingly, this compound exhibited little antiproliferative effect against the normal colonic epithelial cell line FHC. Furthermore, our results showed that the compound could significantly increase ROS production. Apoptosis induction could be attenuated by the free oxygen radical scavenger N‑acetyl cysteine (NAC), indicating that the antiproliferative effect of this compound on colorectal cancer cells is at least partially dependent on the redox balance. In addition, JNK signaling was activated by treatment with this derivative, which led to the induction of apoptosis. On the contrary, a JNK inhibitor could suppress the cell death induced by this compound. Our findings thus suggested a novel anticancer mechanism of a benzo(1,3)dioxol‑based derivative of sulfonamide for colorectal cancer cells and may have therapeutic potential for the treatment of colorectal cancer; however, further investigation is required.
An interested reader drew to our attention that the above study appeared to contain a high level of overlap with an article by the same authors published in the journal Drug Design, Development and Therapy [Kadivar A, Kamalidehghan B, Akbari Javar H, Karimi B, Sedghi R and Noordin MI: Antiproliferation effect of imatinib mesylate on MCF7, T‑47D tumorigenic and MCF 10A nontumorigenic breast cell lines via PDGFR‑β, PDGF‑BB, c‑Kit and SCF genes. Drug Des Devel Ther 11: 469‑481, 2017]. Following an internal investigation and also in liaison with the authors, it was established that, although the studies were conducted along broadly similar lines, the papers contained entirely different data involving two different subsets of cell lines; the submission to Drug Des Devel Ther aimed to explore the effects of imatinib mesylate on three different groups, with each group being represented by a cell line, whereas the submission to Int J Mol Med explored the effectiveness of imatinib mesylate in breast cancer cell lines. In spite of this, considering the relatedness of the articles and the fact that the paper to Drug Des Devel Ther was submitted first and published while the Int J Mol Med paper was passing through the peer‑review process, the authors concede that they should have properly referenced their paper submitted to Drug Des Devel Ther in the Int J Mol Med paper. Note that the publishers of Drug Des Devel Ther, with whom we were liaising, agreed with the decision to issue a Corrigendum for this paper that acknowledges the article published in Drug Des Devel Ther. The authors regret their failure to acknowledge the related paper in this instance, and apologize to the readership for this oversight. [the original article was published in International Journal of Molecular Medicine 14: 414‑424, 2018; DOI: 10.3892/ijmm.2018.3590].
Glioblastoma multiforme (GBM) is an aggressive type of brain tumour that commonly exhibits resistance to treatment. The tumour is highly heterogenous and complex kinomic alterations have been reported leading to dysregulation of signalling pathways. The present study aimed to investigate the novel kinome pathways and to identify potential therapeutic targets in GBM. Meta‑analysis using Oncomine identified 113 upregulated kinases in GBM. RNAi screening was performed on identified kinases using ON‑TARGETplus siRNA library on LN18 and U87MG. Tousled‑like kinase 1 (TLK1), which is a serine/threonine kinase was identified as a potential hit. In vitro functional validation was performed as the role of TLK1 in GBM is unknown. TLK1 knockdown in GBM cells significantly decreased cell viability, clonogenicity, proliferation and induced apoptosis. TLK1 knockdown also chemosensitised the GBM cells to the sublethal dose of temozolomide. The downstream pathways of TLK1 were examined using microarray analysis, which identified the involvement of DNA replication, cell cycle and focal adhesion signalling pathways. In vivo validation of the subcutaneous xenografts of stably transfected sh‑TLK1 U87MG cells demonstrated significantly decreased tumour growth in female BALB/c nude mice. Together, these results suggested that TLK1 may serve a role in GBM survival and may serve as a potential target for glioma.