Affiliations 

  • 1 Department of Pathology, Faculty of Medicine, International Medical University, Kuala Lumpur 57000, Malaysia
Int J Mol Med, 2013 Jul;32(1):235-40.
PMID: 23670213 DOI: 10.3892/ijmm.2013.1375

Abstract

Free radicals are widely known to be the major cause of human diseases such as neurodegenerative diseases, cancer, allergy and autoimmune diseases. Human cells are equipped with a powerful natural antioxidant enzyme network. However, antioxidants, particularly those originating from natural sources such as fruits and vegetables, are still considered essential. Rutin, a quercetin glycoside, has been proven to possess antioxidant potential. However, the neuroprotective effect of rutin in pheochromocytoma (PC-12) cells has not been studied extensively. Therefore, the present study was designed to establish the neuroprotective role of rutin as well as to elucidate the antioxidant mechanism of rutin in 6-hydroxydopamine (6-OHDA)-induced toxicity in PC-12 neuronal cells. PC-12 cells were pretreated with different concentrations of rutin for 4, 8 and 12 h and subsequently incubated with 6-OHDA for 24 h to induce oxidative stress. A significant cytoprotective activity was observed in rutin pretreated cells in a dose-dependent manner. Furthermore, there was marked activation of antioxidant enzymes including superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), and total glutathione (GSH) in rutin pretreated cells compared to cells incubated with 6-OHDA alone. Rutin significantly reduced lipid peroxidation in 6-OHDA-induced PC-12 cells. On the basis of these observations, it was concluded that the bioflavonoid rutin inhibited 6-OHDA-induced neurotoxicity in PC-12 cells by improving antioxidant enzyme levels and inhibiting lipid peroxidation.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.