Displaying publications 1 - 20 of 560 in total

Abstract:
Sort:
  1. Nasir NAA, Sadikan MZ, Agarwal R
    Asia Pac J Clin Nutr, 2021 Sep;30(3):537-555.
    PMID: 34587713 DOI: 10.6133/apjcn.202109_30(3).0020
    Tocotrienols have been reported to exert anticancer, anti-inflammatory, antioxidant, cardio-protective and boneprotective effects through modulation of NFκB signalling pathway. The objective of this systematic review is to evaluate available literature showing the effect of tocotrienols on NFκB signalling pathway and identify the potential mechanisms involved. A comprehensive search was conducted using PubMed and SCOPUS databases using the keywords "tocotrienol" and "NFκB" or "nuclear factor kappa b". Main inclusion criteria were English language original articles showing the effect of tocotrienol on NFκB signalling pathway. Fifty-nine articles were selected from the total of 117 articles initially retrieved from the literature search. Modulation of regulatory proteins and genes such as inhibition of farnesyl prenyl transferase were found to be the mechanisms underlying the tocotrienol-induced suppression of NFκB activation.
    Matched MeSH terms: Antioxidants/pharmacology
  2. Rahmah S, Ahmad Mubbarakh S, Soo Ping K, Subramaniam S
    ScientificWorldJournal, 2015;2015:961793.
    PMID: 25861687 DOI: 10.1155/2015/961793
    Protocorm-like bodies (PLBs) of Brassidium Shooting Star orchid were successfully cryopreserved using droplet-vitrification method. Vitrification based cryopreservation protocol is comprised of preculture, osmoprotection, cryoprotection, cooling, rewarming, and growth recovery and each and every step contributes to the achievement of successful cryopreservation. In order to reveal the lethal and nonlethal damage produced by cryopreservation, histological observation, scanning electron microscopy (SEM), and biochemical analysis were carried out in both cryopreserved and noncryopreserved PLBs of Brassidium Shooting Star orchid comparing with the control PLBs stock culture. Histological and scanning electron microscopy analyses displayed structural changes in cryopreserved PLBs due to the impact of cryoinjury during exposure to liquid nitrogen. Total soluble protein significantly increased throughout the dehydration process and the highest value was achieved when PLBs were stored in liquid nitrogen. Ascorbate peroxidase (APX) and catalase (CAT) showed the highest enzyme activities in both dehydration and cryostorage treatments indicating that stress level of PLBs was high during these stages.
    Matched MeSH terms: Antioxidants/pharmacology*
  3. Ahmed S, Sulaiman SA, Baig AA, Ibrahim M, Liaqat S, Fatima S, et al.
    Oxid Med Cell Longev, 2018;2018:8367846.
    PMID: 29492183 DOI: 10.1155/2018/8367846
    Honey clasps several medicinal and health effects as a natural food supplement. It has been established as a potential therapeutic antioxidant agent for various biodiverse ailments. Data report that it exhibits strong wound healing, antibacterial, anti-inflammatory, antifungal, antiviral, and antidiabetic effects. It also retains immunomodulatory, estrogenic regulatory, antimutagenic, anticancer, and numerous other vigor effects. Data also show that honey, as a conventional therapy, might be a novel antioxidant to abate many of the diseases directly or indirectly associated with oxidative stress. In this review, these wholesome effects have been thoroughly reviewed to underscore the mode of action of honey exploring various possible mechanisms. Evidence-based research intends that honey acts through a modulatory road of multiple signaling pathways and molecular targets. This road contemplates through various pathways such as induction of caspases in apoptosis; stimulation of TNF-α, IL-1β, IFN-γ, IFNGR1, and p53; inhibition of cell proliferation and cell cycle arrest; inhibition of lipoprotein oxidation, IL-1, IL-10, COX-2, and LOXs; and modulation of other diverse targets. The review highlights the research done as well as the apertures to be investigated. The literature suggests that honey administered alone or as adjuvant therapy might be a potential natural antioxidant medicinal agent warranting further experimental and clinical research.
    Matched MeSH terms: Antioxidants/pharmacology*
  4. Moniruzzaman M, Khalil MI, Sulaiman SA, Gan SH
    PMID: 23983317
    Free radicals and reactive oxygen species (ROS) have been implicated in contributing to the processes of aging and disease. In an effort to combat free radical activity, scientists are studying the effects of increasing individuals' antioxidant levels through diet and dietary supplements. Honey appears to act as an antioxidant in more ways than one. In the body, honey can mop up free radicals and contribute to better health. Various antioxidant activity methods have been used to measure and compare the antioxidant activity of honey. In recent years, DPPH (Diphenyl-1-picrylhydrazyl), FRAP (Ferric Reducing Antioxidant Power), ORAC (The Oxygen Radical Absorbance Capacity), ABTS [2, 2-azinobis (3ehtylbenzothiazoline-6-sulfonic acid) diamonium salt], TEAC [6-hydroxy-2, 5, 7, 8-tetramethylchroman-2-carboxylic acid (Trolox)-equivalent antioxidant capacity] assays have been used to evaluate antioxidant activity of honey. The antioxidant activity of honey is also measured by ascorbic acid content and different enzyme assays like Catalase (CAT), Glutathione Peroxidase (GPO), Superoxide Dismutase (SOD). Among the different methods available, methods that have been validated, standardized and widely reported are recommended.
    Matched MeSH terms: Antioxidants/pharmacology*
  5. Lim SM, Yim HS
    Int J Med Mushrooms, 2012;14(6):593-602.
    PMID: 23510253
    A central composite design of response surface methodology (RSM) was employed to optimize the extraction time (X1: 266.4-393.6 min) and temperature (X2: 42.9-57.1°C) of Pleurotus ostreatus aqueous extract with high antioxidant activities, namely DPPH radical-scavenging activity, ABTS radical cation inhibition, and ferric reducing/antioxidant power, as well as total phenolic content (TPC). Results showed that the data were adequately fitted into four second-order polynomial models developed by RSM. The extraction time and temperature were found to have significant quadratic effects on antioxidant activities and TPC. The optimal extraction time and temperature were 282.3 min and 42.9°C (DPPH), 393.6 min and 42.9°C (ABTS), 340.4 min and 49.8°C (FRAP), and 347.6 min, 49.7°C (TPC), with corresponding yields of 53.32%, 73.20%, 37.14 mM Fe2+ equivalents/100 g, and 826.33 mg gallic acid equivalents/100 g, respectively. These experimental data were close to their predicted values. The establishment of such a model provides a good experimental basis for employing RSM to optimize the extraction time and temperature for high antioxidant activities from P. ostreatus.
    Matched MeSH terms: Antioxidants/pharmacology*
  6. Gao X, Xue Z, Ma Q, Guo Q, Xing L, Santhanam RK, et al.
    J Food Biochem, 2020 02;44(2):e13126.
    PMID: 31877235 DOI: 10.1111/jfbc.13126
    Garlic protein (GP) was enzymatically hydrolyzed using pepsin and trypsin followed by the evaluation of antioxidant and angiotensin-converting enzyme (ACE) inhibitory activities of GP and its hydrolysates. The antihypertensive effects of GP and its hydrolysates were determined in vivo. The results showed that GP and its hydrolysates namely GPH-P (pepsin) and GPH-T (trypsin) possessed appreciable antioxidant and ACE inhibitory activities. The ACE inhibitory activity of GP, GPH-T, and GPH-P was in consistent with their antioxidant activities. GP and its hydrolysates offered significant protective effects against H2 O2 -induced oxidative damage (p 
    Matched MeSH terms: Antioxidants/pharmacology
  7. Sahhugi Z, Hasenan SM, Jubri Z
    Oxid Med Cell Longev, 2014;2014:673628.
    PMID: 25505937 DOI: 10.1155/2014/673628
    Aging is characterized by progressive decline in physiological and body function due to increase in oxidative damage. Gelam honey has been accounted to have high phenolic and nonphenolic content to attenuate oxidative damage. This study was to determine the effect of local gelam honey on oxidative damage of aged rats. Twenty-four male Spraque-Dawley rats were divided into young (2 months) and aged (19 months) groups. Each group was further divided into control (fed with plain water) and supplemented with 2.5 mg/kg body weight of gelam honey for 8 months. DNA damage level was determined by comet assay and plasma malondialdehyde (MDA) by high performance liquid chromatography (HPLC). The activity of blood and cardiac antioxidant enzymes was determined by spectrophotometer. The DNA damage and MDA level were reduced in both gelam honey supplemented groups. Gelam honey increases erythrocytes CAT and cardiac SOD activities in young and cardiac CAT activity in young and aged groups. The DNA damage was increased in the aged group compared to young group, but reduced at the end of the study. The decline of oxidative damage in rats supplemented with gelam honey might be through the modulation of antioxidant enzyme activities.
    Matched MeSH terms: Antioxidants/pharmacology
  8. Ghasemzadeh A, Jaafar HZ
    ScientificWorldJournal, 2014;2014:523120.
    PMID: 25147852 DOI: 10.1155/2014/523120
    Response surface methodology was applied to optimization of the conditions for reflux extraction of Pandan (Pandanus amaryllifolius Roxb.) in order to achieve a high content of total flavonoids (TF), total phenolics (TP), and high antioxidant capacity (AC) in the extracts. Central composite experimental design with three factors and three levels was employed to consider the effects of the operation parameters, including the methanol concentration (MC, 40%-80%), extraction temperature (ET, 40-70°C), and liquid-to-solid ratio (LS ratio, 20-40 mL/g) on the properties of the extracts. Response surface plots showed that increasing these operation parameters induced the responses significantly. The TF content and AC could be maximized when the extraction conditions (MC, ET, and LS ratio) were 78.8%, 69.5°C, and 32.4 mL/g, respectively, whereas the TP content was optimal when these variables were 75.1%, 70°C, and 31.8 mL/g, respectively. Under these optimum conditions, the experimental TF and TP content and AC were 1.78, 6.601 mg/g DW, and 87.38%, respectively. The optimized model was validated by a comparison of the predicted and experimental values. The experimental values were found to be in agreement with the predicted values, indicating the suitability of the model for optimizing the conditions for the reflux extraction of Pandan.
    Matched MeSH terms: Antioxidants/pharmacology
  9. Bagheri H, Abdul Manap MY, Solati Z
    Talanta, 2014 Apr;121:220-8.
    PMID: 24607131 DOI: 10.1016/j.talanta.2014.01.007
    The aim of this study was to optimize the antioxidant activity of Piper nigrum L. essential oil extracted using the supercritical carbon dioxide (SC-CO₂) technique. Response surface methodology was applied using a three-factor central composite design to evaluate the effects of three independent extraction variables: pressure of 15-30 MPa, temperature of 40-50 °C and dynamic extraction time of 40-80 min. The DPPH radical scavenging method was used to evaluate the antioxidant activity of the extracts. The results showed that the best antioxidant activity was achieved at 30 MPa, 40 °C and 40 min. The extracts were analyzed by GC-FID and GC-MS. The main components extracted using SC-CO₂ extraction in optimum conditions were β-caryophyllene (25.38 ± 0.62%), limonene (15.64 ± 0.15%), sabinene (13.63 ± 0.21%), 3-carene (9.34 ± 0.04%), β-pinene (7.27 ± 0.05%), and α-pinene (4.25 ± 0.06%). The essential oil obtained through this technique was compared with the essential oil obtained using hydro-distillation. For the essential oil obtained by hydro-distillation, the most abundant compounds were β-caryophyllene (18.64 ± 0.84%), limonene (14.95 ± 0.13%), sabinene (13.19 ± 0.17%), 3-carene (8.56 ± 0.11%), β-pinene (9.71 ± 0.12%), and α-pinene (7.96 ± 0.14%). Radical scavenging activity of the extracts obtained by SC-CO₂ and hydro-distillation showed an EC₅₀ of 103.28 and 316.27 µg mL(-1) respectively.
    Matched MeSH terms: Antioxidants/pharmacology*
  10. Chua LS
    J Ethnopharmacol, 2013 Dec 12;150(3):805-17.
    PMID: 24184193 DOI: 10.1016/j.jep.2013.10.036
    Rutin is a common dietary flavonoid that is widely consumed from plant-derived beverages and foods as traditional and folkloric medicine worldwide. Rutin is believed to exhibit significant pharmacological activities, including anti-oxidation, anti-inflammation, anti-diabetic, anti-adipogenic, neuroprotective and hormone therapy. Till date, over 130 registered therapeutic medicinal preparations are containing rutin in their formulations. This article aims to critically review the extraction methods for plant-based rutin and its pharmacological activities. This review provides comprehensive data on the performance of rutin extraction methods and the extent of its pharmacological activities using various in vitro and in vivo experimental models.
    Matched MeSH terms: Antioxidants/pharmacology
  11. Erejuwa OO, Sulaiman SA, Ab Wahab MS
    Molecules, 2012 Apr 12;17(4):4400-23.
    PMID: 22499188 DOI: 10.3390/molecules17044400
    The global prevalence of chronic diseases such as diabetes mellitus, hypertension, atherosclerosis, cancer and Alzheimer's disease is on the rise. These diseases, which constitute the major causes of death globally, are associated with oxidative stress. Oxidative stress is defined as an "imbalance between oxidants and antioxidants in favor of the oxidants, potentially leading to damage". Individuals with chronic diseases are more susceptible to oxidative stress and damage because they have elevated levels of oxidants and/or reduced antioxidants. This, therefore, necessitates supplementation with antioxidants so as to delay, prevent or remove oxidative damage. Honey is a natural substance with many medicinal effects such as antibacterial, hepatoprotective, hypoglycemic, reproductive, antihypertensive and antioxidant effects. This review presents findings that indicate honey may ameliorate oxidative stress in the gastrointestinal tract (GIT), liver, pancreas, kidney, reproductive organs and plasma/serum. Besides, the review highlights data that demonstrate the synergistic antioxidant effect of honey and antidiabetic drugs in the pancreas, kidney and serum of diabetic rats. These data suggest that honey, administered alone or in combination with conventional therapy, might be a novel antioxidant in the management of chronic diseases commonly associated with oxidative stress. In view of the fact that the majority of these data emanate from animal studies, there is an urgent need to investigate this antioxidant effect of honey in human subjects with chronic or degenerative diseases.
    Matched MeSH terms: Antioxidants/pharmacology*
  12. Qader SW, Abdulla MA, Chua LS, Najim N, Zain MM, Hamdan S
    Molecules, 2011 Apr 21;16(4):3433-43.
    PMID: 21512451 DOI: 10.3390/molecules16043433
    Aqueous and ethanol extracts of different traditional Malaysian plants (Polygonum minus, Andrographis paniculata, Curcuma xanthorrhiza, Momordica charantia and Strobilanthes crispus) were evaluated for their antioxidant properties, total phenolic content and cytotoxic activity. Antioxidant activity was evaluated by using 1,1-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. The results showed that ethanol extracts contain high antioxidant activities compared to aqueous extracts. The findings exhibited a strong correlation between antioxidant activity and the total phenol contents. In addition, all the plant extracts showed non-toxic effects against a normal human lung fibroblast cell line (Hs888Lu). Although traditionally aqueous extracts are used, we determined that ethanol extracts usually achieved better activity in the assays.
    Matched MeSH terms: Antioxidants/pharmacology*
  13. Ariffin F, Heong Chew S, Bhupinder K, Karim AA, Huda N
    J Sci Food Agric, 2011 Dec;91(15):2731-9.
    PMID: 21987075 DOI: 10.1002/jsfa.4454
    C. asiatica was exposed to various fermentations: no fermentation (0 min), partial fermentation (120 min) and full fermentation (24 h). Total phenolic content (TPC) and ferric-reducing antioxidant power (FRAP) of C. asiatica infusions were studied as a function of water temperature (60, 80 or 100 °C), the brewing stage (one, two or three) and the brewing time (1, 3, 5, 10, 15 or 20 min). The optimum brewing procedure was adopted to study the antioxidant properties and phenolic compounds in C. asiatica infusions.
    Matched MeSH terms: Antioxidants/pharmacology*
  14. Mohamed M, Sirajudeen K, Swamy M, Yaacob NS, Sulaiman SA
    Afr J Tradit Complement Altern Med, 2009 Oct 15;7(1):59-63.
    PMID: 21304614
    Honey has been used since ancient times for its nutritional as well as curative properties. Tualang honey is collected from wild honey bees' hives on Tualang trees found in the Malaysian rain forest. It has been used traditionally for the treatment of various diseases, where its therapeutic value has partly been related to its antioxidant properties. This study therefore assessed the colour intensity, total phenolic content, antioxidant activity and antiradical activity of gamma irradiated Tualang Honey. The colour intensity at ABS₄₅₀ was 489.5 ± 1.7 mAU, total phenolic content was 251.7 ± 7.9 mg (gallic acid) /Kg honey, total antioxidant activity by FRAP assay was 322.1 ± 9.7 (µM Fe(II)) and the antiradical activity by DPPH assay was 41.30 ± 0.78 (% inhibition). The data confirms that the antioxidant properties of gamma irradiated Tualang honey are similar to other types of honeys reported in the literature.
    Matched MeSH terms: Antioxidants/pharmacology*
  15. Yehye WA, Rahman NA, Ariffin A, Abd Hamid SB, Alhadi AA, Kadir FA, et al.
    Eur J Med Chem, 2015 Aug 28;101:295-312.
    PMID: 26150290 DOI: 10.1016/j.ejmech.2015.06.026
    Hindered phenols find a wide variety of applications across many different industry sectors. Butylated hydroxytoluene (BHT) is a most commonly used antioxidant recognized as safe for use in foods containing fats, pharmaceuticals, petroleum products, rubber and oil industries. In the past two decades, there has been growing interest in finding novel antioxidants to meet the requirements of these industries. To accelerate the antioxidant discovery process, researchers have designed and synthesized a series of BHT derivatives targeting to improve its antioxidant properties to be having a wide range of antioxidant activities markedly enhanced radical scavenging ability and other physical properties. Accordingly, some structure-activity relationships and rational design strategies for antioxidants based on BHT structure have been suggested and applied in practice. We have identified 14 very sensitive parameters, which may play a major role on the antioxidant performance of BHT. In this review, we attempt to summarize the current knowledge on this topic, which is of significance in selecting and designing novel antioxidants using a well-known antioxidant BHT as a building-block molecule. Our strategy involved investigation on understanding the chemistry behind the antioxidant activities of BHT, whether through hydrogen or electron transfer mechanism to enable promising anti-oxidant candidates to be synthesized.
    Matched MeSH terms: Antioxidants/pharmacology*
  16. Bjørklund G, Dadar M, Martins N, Chirumbolo S, Goh BH, Smetanina K, et al.
    Basic Clin Pharmacol Toxicol, 2018 Jun;122(6):539-558.
    PMID: 29369521 DOI: 10.1111/bcpt.12972
    Several studies have reported that nature-derived antioxidants may prevent free radicals over-production and therefore control the onset and prevent the exacerbation of different kinds of diseases caused by oxidative stress and redox-derived stressors, including ageing, fundamentally by suppressing the oxidative by-products-mediated degradation. Naturally derived antioxidants exert their anti-ageing action via a panoply of signalling systems, many of which engaging reactive oxygen and nitrogen species scavenging, with the Nrf2/Keap1-ARE system and improving the many survival genes and functions (such as the pathway mTOR/Foxo/SIRT1) able to slow cellular senescence. Most of the research in this field has evaluated the regulative effects and even pathways of herbal extracts with antioxidant property in the ageing process, and various age-related disorders such as cardiovascular disease, ischaemia-reperfusion injury, coronary and myocardial circulatory perfusion, peripheral vascular resistance, and even neurodegenerative disorders are prevented plant phytochemicals often via their antioxidant potential. A much more complex ability to interact with survival functions makes these compounds successfully active in preventing ageing-related disorders. This report aimed to discuss in more detail some selected medicinal plants including Allium sativum, Aloe vera, Crataegus spp., Cynara scolymus, Eleutherococcus senticosus, Ginkgo biloba, Hippophae rhamnoides, Panax ginseng, Rosmarinus officinalis, Schizandra chinensis, Vitis vinifera and seaweeds in the prevention of ageing-related pathologies. A systematic overview of the relevant information in the antioxidant function of the many herbal products reviewed here for the control of the ageing process is proposed, to provide a new horizon on the design of anti-ageing herbal medicines.
    Matched MeSH terms: Antioxidants/pharmacology
  17. Abdul Rahim R, Jayusman PA, Muhammad N, Mohamed N, Lim V, Ahmad NH, et al.
    PMID: 33805420 DOI: 10.3390/ijerph18073532
    Oxidative stress and inflammation are two common risk factors of various life-threatening disease pathogenesis. In recent years, medicinal plants that possess antioxidant and anti-inflammatory activities were extensively studied for their potential role in treating and preventing diseases. Spilanthes acmella (S. acmella), which has been traditionally used to treat toothache in Malaysia, contains various active metabolites responsible for its anti-inflammatory, antiseptic, and anesthetic bioactivities. These bioactivities were attributed to bioactive compounds, such as phenolic, flavonoids, and alkamides. The review focused on the summarization of in vitro and in vivo experimental reports on the antioxidant and anti-inflammatory actions of S. acmella, as well as how they contributed to potential health benefits in lowering the risk of diseases that were related to oxidative stress. The molecular mechanism of S. acmella in reducing oxidative stress and inflammatory targets, such as inducible nitric oxide synthase (iNOS), transcription factors of the nuclear factor-κB family (NF-κB), cyclooxygenase-2 (COX-2), and mitogen-activated protein kinase (MAPK) signaling pathways were discussed. Besides, the antioxidant potential of S. acmella was measured by total phenolic content (TPC), total flavonid content (TFC), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and superoxide anion radical scavenging (SOD) and thiobarbituric acid reactive substance (TBARS) assays. This review revealed that S. acmella might have a potential role as a reservoir of bioactive agents contributing to the observed antioxidant, anti-inflammatory, and health beneficial effects.
    Matched MeSH terms: Antioxidants/pharmacology
  18. Ekeuku SO, Pang KL, Chin KY
    Molecules, 2021 Apr 16;26(8).
    PMID: 33923673 DOI: 10.3390/molecules26082319
    BACKGROUND: Osteoporosis results from excessive bone resorption and reduced bone formation, triggered by sex hormone deficiency, oxidative stress and inflammation. Tanshinones are a class of lipophilic phenanthrene compounds found in the roots of Salvia miltiorrhiza with antioxidant and anti-inflammatory activities, which contribute to its anti-osteoporosis effects. This systematic review aims to provide an overview of the skeletal beneficial effects of tanshinones.

    METHODS: A systematic literature search was conducted in January 2021 using Pubmed, Scopus and Web of Science from the inception of these databases. Original studies reporting the effects of tanshinones on bone through cell cultures, animal models and human clinical trials were considered.

    RESULTS: The literature search found 158 unique articles on this topic, but only 20 articles met the inclusion criteria and were included in this review. The available evidence showed that tanshinones promoted osteoblastogenesis and bone formation while reducing osteoclastogenesis and bone resorption.

    CONCLUSIONS: Tanshinones modulates bone remodelling by inhibiting osteoclastogenesis and osteoblast apoptosis and stimulating osteoblastogenesis. Therefore, it might complement existing strategies to prevent bone loss.

    Matched MeSH terms: Antioxidants/pharmacology
  19. Tang KS
    Curr Diabetes Rev, 2021;17(4):496-502.
    PMID: 33045978 DOI: 10.2174/1573399816999201012201111
    BACKGROUND: Diabetes mellitus is a metabolic disease that requires immediate attention. Oxidative stress that leads to the generation of reactive oxygen species is a contributing factor to the disease progression. Yttrium oxide nanoparticles (Y2O3 NPs) have a profound effect on alleviating oxidative damage.

    METHODS: The literature related to Y2O3 NPs and oxidative stress has been thoroughly searched using PubMed and Scopus databases and relevant studies from inception until August 2020 were included in this scoping review.

    RESULTS: Y2O3 NPs altered oxidative stress-related biochemical parameters in different disease models including diabetes.

    CONCLUSION: Although Y2O3 NPs are a promising antidiabetic agent due to their antioxidant and anti- inflammatory properties, more studies are required to further elucidate the pharmacological and toxicological properties of these nanoparticles.

    Matched MeSH terms: Antioxidants/pharmacology
  20. Ali JS, Saleem H, Mannan A, Zengin G, Mahomoodally MF, Locatelli M, et al.
    BMC Complement Med Ther, 2020 Oct 16;20(1):313.
    PMID: 33066787 DOI: 10.1186/s12906-020-03093-1
    BACKGROUND: Ethnobotanical and plant-based products allow for the isolation of active constituents against a number of maladies. Monotheca buxifolia is used by local communities due to its digestive and laxative properties, as well as its ability to cure liver, kidney, and urinary diseases. There is a need to explore the biological activities and chemical constituents of this medicinal plant.

    METHODS: In this work, the biochemical potential of M. buxifolia (Falc.) A. DC was explored and linked with its biological activities. Methanol and chloroform extracts from leaves and stems were investigated for total phenolic and flavonoid contents. Ultrahigh-performance liquid chromatography coupled with mass spectrometry (UHPLC-MS) was used to determine secondary-metabolite composition, while high-performance liquid chromatography coupled with photodiode array detection (HPLC-PDA) was used for polyphenolic quantification. In addition, we carried out in vitro assays to determine antioxidant potential and the enzyme-inhibitory response of M. buxifolia extracts.

    RESULTS: Phenolics (91 mg gallic-acid equivalent (GAE)/g) and flavonoids (48.86 mg quercetin equivalent (QE)/g) exhibited their highest concentration in the methanol extract of stems and the chloroform extract of leaves, respectively. UHPLC-MS analysis identified a number of important phytochemicals, belonging to the flavonoid, phenolic, alkaloid, and terpenoid classes of secondary metabolites. The methanol extract of leaves contained a diosgenin derivative and polygalacin D, while kaempferol and robinin were most abundant in the chloroform extract. The methanol extract of stems contained a greater peak area for diosgenin and kaempferol, whereas this was true for lucidumol A and 3-O-cis-coumaroyl maslinic acid in the chloroform extract. Rutin, epicatechin, and catechin were the main phenolics identified by HPLC-PDA analysis. The methanol extract of stems exhibited significant 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical-scavenging activities (145.18 and 279.04 mmol Trolox equivalent (TE)/g, respectively). The maximum cupric reducing antioxidant capacity (CUPRAC) (361.4 mg TE/g), ferric-reducing antioxidant power (FRAP) (247.19 mg TE/g), and total antioxidant potential (2.75 mmol TE/g) were depicted by the methanol extract of stems. The methanol extract of leaves exhibited stronger inhibition against acetylcholinesterase (AChE) and glucosidase, while the chloroform extract of stems was most active against butyrylcholinesterase (BChE) (4.27 mg galantamine equivalent (GALAE)/g). Similarly, the highest tyrosinase (140 mg kojic-acid equivalent (KAE)/g) and amylase (0.67 mmol acarbose equivalent (ACAE)/g) inhibition was observed for the methanol extract of stems.

    CONCLUSIONS: UHPLC-MS analysis and HPLC-PDA quantification identified a number of bioactive secondary metabolites of M. buxifolia, which may be responsible for its antioxidant potential and enzyme-inhibitory response. M. buxifolia can be further explored for the isolation of its active components to be used as a drug.

    Matched MeSH terms: Antioxidants/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links