Displaying publications 1 - 20 of 4447 in total

Abstract:
Sort:
  1. Imam MU, Ismail M, Ooi DJ, Azmi NH, Sarega N, Chan KW, et al.
    Crit. Rev. Biotechnol., 2016 Aug;36(4):585-93.
    PMID: 25641328 DOI: 10.3109/07388551.2014.995586
    Plant bioresources are relied upon as natural, inexpensive, and sustainable remedies for the management of several chronic diseases worldwide. Plants have historically been consumed for medicinal purposes based on traditional belief, but this trend is currently changing. The growing interest in the medicinal properties of plant bioresources stems from concerns of side effects and other adverse effects caused by synthetic drugs. This interest has yielded a better understanding of the roles of plant bioactive compounds in health promotion and disease prevention, including the underlying mechanisms involved in such functional effects. The desire to maximize the potential of phytochemicals has led to the development of "rich fractions," in which extracts contain bioactive compounds in addition to elevated levels of the primary compound. Although a rich fraction effectively increases the bioactivity of the extract, the standardization and quality assurance process can be challenging. However, the supercritical fluid extraction (SFE) system is a promising green technology in this regard. Future clinical and pharmacological studies are needed to fully elucidate the implications of these preparations in the management of human diseases, thereby fostering a move toward evidence-based medicine.
    Matched MeSH terms: Phenylpropionates/pharmacology*; Plant Extracts/pharmacology*; Benzoquinones/pharmacology*; Tocotrienols/pharmacology*
  2. Gopinath V, Saravanan S, Al-Maleki AR, Ramesh M, Vadivelu J
    Biomed. Pharmacother., 2018 Nov;107:96-108.
    PMID: 30086465 DOI: 10.1016/j.biopha.2018.07.136
    Natural polysaccharides are renewable with a high degree of biocompatibility, biodegradability, and ability to mimic the natural extracellular matrix (ECM) microenvironment. Comprehensive investigations of polysaccharides are essential for our fundamental understanding of exploiting its potential as bio-composite, nano-conjugate and in pharmaceutical sectors. Polysaccharides are considered to be superior to other polymers, for its ease in tailoring, bio-compatibility, bio-activity, homogeneity and bio-adhesive properties. The main focus of this review is to spotlight the new advancements and challenges concerned with surface modification, binding domains, biological interaction with the conjugate including stability, polydispersity, and biodegradability. In this review, we have limited our survey to three essential polysaccharides including cellulose, starch, and glycogen that are sourced from plants, microbes, and animals respectively are reviewed. We also present the polysaccharides which have been extensively modified with the various types of conjugates for combating last-ditch pharmaceutical challenges.
    Matched MeSH terms: Antineoplastic Agents/pharmacology; Cellulose/pharmacology*; Glycogen/pharmacology*; Polysaccharides/pharmacology*; Starch/pharmacology*
  3. Erejuwa OO, Sulaiman SA, Wahab MS
    Molecules, 2012 Feb 15;17(2):1900-15.
    PMID: 22337138 DOI: 10.3390/molecules17021900
    Honey is a natural substance with many medicinal properties, including antibacterial, hepatoprotective, hypoglycemic, antioxidant and antihypertensive effects. It reduces hyperglycemia in diabetic rats and humans. However, the mechanism(s) of its hypoglycemic effect remain(s) unknown. Honey comprises many constituents, making it difficult to ascertain which component(s) contribute(s) to its hypoglycemic effect. Nevertheless, available evidence indicates that honey consists of predominantly fructose and glucose. The objective of this review is to summarize findings which indicate that fructose exerts a hypoglycemic effect. The data show that glucose and fructose exert a synergistic effect in the gastrointestinal tract and pancreas. This synergistic effect might enhance intestinal fructose absorption and/or stimulate insulin secretion. The results indicate that fructose enhances hepatic glucose uptake and glycogen synthesis and storage via activation of hepatic glucokinase and glycogen synthase, respectively. The data also demonstrate the beneficial effects of fructose on glycemic control, glucose- and appetite-regulating hormones, body weight, food intake, oxidation of carbohydrate and energy expenditure. In view of the similarities of these effects of fructose with those of honey, the evidence may support the role of fructose in honey in mediating the hypoglycemic effect of honey.
    Matched MeSH terms: Fructose/pharmacology*; Hypoglycemic Agents/pharmacology*
  4. Mat Jais AM, Dambisya YM, Lee TL
    J Ethnopharmacol, 1997 Jul;57(2):125-30.
    PMID: 9254114
    Haruan, Channa striatus, is a snakehead fish consumed in many parts of the southeast Asian region. It is believed to promote wound healing, as well as reduce post-operative pain. In an attempt to establish the scientific basis for the alleged pain-relieving benefits of this fish, we studied the antinociceptive effects of whole fillet and mucus extracts from haruan in the mouse using the abdominal constriction and tail flick tests. In the abdominal constriction test, the 30 min fillet extract exhibited concentration-dependent inhibition of the writhing response in the 10-50% concentration range, with 20% as the IC50 value. This activity was not dependent on the duration of extraction, with no significant differences among the extracts obtained at durations of 10, 20, 30, 60, 90 and 120 min (range between 45-54% inhibition at 20% concentration). The mucus extract also showed concentration-dependent inhibition of the abdominal constriction response-at the highest concentration used the average inhibition was 68.9%, while IC50 value was 25%. Neither the fillet extract (30 min, 20%) nor the mucus extract (25%) had any demonstrable effect on the tail flick latency on their own, but significantly enhanced the antinociceptive activity of morphine in this assay. Similarly, low concentrations of the mucus and fillet extract enhanced the effects of morphine in the abdominal constriction test. Collectively, these results suggest a scientific basis for the folklore practice of eating haruan fish in the post-operative period for pain relief: Haruan extracts have antinociceptive activity and enhance the activity of other antinociceptive agents.
    Matched MeSH terms: Analgesics/pharmacology*; Morphine/pharmacology
  5. Neoh CK
    Med. J. Malaysia, 1992 Mar;47(1):86-8.
    PMID: 1387458
    Matched MeSH terms: Antineoplastic Agents, Phytogenic/pharmacology*; Drugs, Chinese Herbal/pharmacology*
  6. Singh KI, Hooi CW, Ha LS
    PMID: 4109414
    Matched MeSH terms: Dichlorvos/pharmacology; Dieldrin/pharmacology; Dimethoate/pharmacology; Chlorpyrifos/pharmacology; Hydrocarbons, Halogenated/pharmacology; Insecticides/pharmacology*; Malathion/pharmacology; Organophosphorus Compounds/pharmacology; Organothiophosphorus Compounds/pharmacology; Tetrachlorvinphos/pharmacology; Vinyl Compounds/pharmacology
  7. Sahid I, Razlin W, Zaabar W
    Bull Environ Contam Toxicol, 1993 Oct;51(4):605-11.
    PMID: 8400666
    Matched MeSH terms: Herbicides/pharmacology*; Thiram/pharmacology*; Triazines/pharmacology*
  8. Rahmah S, Ahmad Mubbarakh S, Soo Ping K, Subramaniam S
    ScientificWorldJournal, 2015;2015:961793.
    PMID: 25861687 DOI: 10.1155/2015/961793
    Protocorm-like bodies (PLBs) of Brassidium Shooting Star orchid were successfully cryopreserved using droplet-vitrification method. Vitrification based cryopreservation protocol is comprised of preculture, osmoprotection, cryoprotection, cooling, rewarming, and growth recovery and each and every step contributes to the achievement of successful cryopreservation. In order to reveal the lethal and nonlethal damage produced by cryopreservation, histological observation, scanning electron microscopy (SEM), and biochemical analysis were carried out in both cryopreserved and noncryopreserved PLBs of Brassidium Shooting Star orchid comparing with the control PLBs stock culture. Histological and scanning electron microscopy analyses displayed structural changes in cryopreserved PLBs due to the impact of cryoinjury during exposure to liquid nitrogen. Total soluble protein significantly increased throughout the dehydration process and the highest value was achieved when PLBs were stored in liquid nitrogen. Ascorbate peroxidase (APX) and catalase (CAT) showed the highest enzyme activities in both dehydration and cryostorage treatments indicating that stress level of PLBs was high during these stages.
    Matched MeSH terms: Antioxidants/pharmacology*
  9. Kaka U, Hui Cheng C, Meng GY, Fakurazi S, Kaka A, Behan AA, et al.
    Biomed Res Int, 2015;2015:305367.
    PMID: 25695060 DOI: 10.1155/2015/305367
    Effects of ketamine and lidocaine on electroencephalographic (EEG) changes were evaluated in minimally anaesthetized dogs, subjected to electric stimulus. Six dogs were subjected to six treatments in a crossover design with a washout period of one week. Dogs were subjected to intravenous boluses of lidocaine 2 mg/kg, ketamine 3 mg/kg, meloxicam 0.2 mg/kg, morphine 0.2 mg/kg and loading doses of lidocaine 2 mg/kg followed by continuous rate infusion (CRI) of 50 and 100 mcg/kg/min, and ketamine 3 mg/kg followed by CRI of 10 and 50 mcg/kg/min. Electroencephalogram was recorded during electrical stimulation prior to any drug treatment (before treatment) and during electrical stimulation following treatment with the drugs (after treatment) under anaesthesia. Anaesthesia was induced with propofol and maintained with halothane at a stable concentration between 0.85 and 0.95%. Pretreatment median frequency was evidently increased (P < 0.05) for all treatment groups. Lidocaine, ketamine, and morphine depressed the median frequency resulting from the posttreatment stimulation. The depression of median frequency suggested evident antinociceptive effects of these treatments in dogs. It is therefore concluded that lidocaine and ketamine can be used in the analgesic protocol for the postoperative pain management in dogs.
    Matched MeSH terms: Analgesics/pharmacology*; Ketamine/pharmacology*; Lidocaine/pharmacology*; Morphine/pharmacology*; Thiazines/pharmacology*; Thiazoles/pharmacology*; Propofol/pharmacology
  10. Subrahmanyam C
    Med J Malaya, 1966 Mar;20(3):234-9.
    PMID: 4223073
    Matched MeSH terms: Hemolysin Proteins/pharmacology*
  11. REID JA
    Nature, 1951 Nov 17;168(4281):863-5.
    PMID: 14899505
    Matched MeSH terms: DDT/pharmacology*
  12. Ahmed S, Sulaiman SA, Baig AA, Ibrahim M, Liaqat S, Fatima S, et al.
    Oxid Med Cell Longev, 2018;2018:8367846.
    PMID: 29492183 DOI: 10.1155/2018/8367846
    Honey clasps several medicinal and health effects as a natural food supplement. It has been established as a potential therapeutic antioxidant agent for various biodiverse ailments. Data report that it exhibits strong wound healing, antibacterial, anti-inflammatory, antifungal, antiviral, and antidiabetic effects. It also retains immunomodulatory, estrogenic regulatory, antimutagenic, anticancer, and numerous other vigor effects. Data also show that honey, as a conventional therapy, might be a novel antioxidant to abate many of the diseases directly or indirectly associated with oxidative stress. In this review, these wholesome effects have been thoroughly reviewed to underscore the mode of action of honey exploring various possible mechanisms. Evidence-based research intends that honey acts through a modulatory road of multiple signaling pathways and molecular targets. This road contemplates through various pathways such as induction of caspases in apoptosis; stimulation of TNF-α, IL-1β, IFN-γ, IFNGR1, and p53; inhibition of cell proliferation and cell cycle arrest; inhibition of lipoprotein oxidation, IL-1, IL-10, COX-2, and LOXs; and modulation of other diverse targets. The review highlights the research done as well as the apertures to be investigated. The literature suggests that honey administered alone or as adjuvant therapy might be a potential natural antioxidant medicinal agent warranting further experimental and clinical research.
    Matched MeSH terms: Antioxidants/pharmacology*
  13. Wharton RH
    Bull. World Health Organ., 1958;18(4):684.
    PMID: 13536813
    Matched MeSH terms: Lindane/pharmacology*
  14. Koou SY, Chong CS, Vythilingam I, Lee CY, Ng LC
    Parasit Vectors, 2014;7:471.
    PMID: 25301032 DOI: 10.1186/s13071-014-0471-0
    In Singapore, dose-response bioassays of Aedes aegypti (L.) adults have been conducted, but the mechanisms underlying resistance to insecticides remain unclear. In this study, we evaluated insecticide resistance and its underlying mechanism in field populations of Ae. aegypti adults.
    Matched MeSH terms: Insecticides/pharmacology*; Organothiophosphorus Compounds/pharmacology*; Organophosphates/pharmacology; Pyrethrins/pharmacology*
  15. Moghadamtousi SZ, Kadir HA, Hassandarvish P, Tajik H, Abubakar S, Zandi K
    Biomed Res Int, 2014;2014:186864.
    PMID: 24877064 DOI: 10.1155/2014/186864
    Curcuma longa L. (Zingiberaceae family) and its polyphenolic compound curcumin have been subjected to a variety of antimicrobial investigations due to extensive traditional uses and low side effects. Antimicrobial activities for curcumin and rhizome extract of C. longa against different bacteria, viruses, fungi, and parasites have been reported. The promising results for antimicrobial activity of curcumin made it a good candidate to enhance the inhibitory effect of existing antimicrobial agents through synergism. Indeed, different investigations have been done to increase the antimicrobial activity of curcumin, including synthesis of different chemical derivatives to increase its water solubility as well ass cell up take of curcumin. This review aims to summarize previous antimicrobial studies of curcumin towards its application in the future studies as a natural antimicrobial agent.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*; Antifungal Agents/pharmacology*; Antiviral Agents/pharmacology*; Curcumin/pharmacology*
  16. Podin Y, Sarovich DS, Price EP, Kaestli M, Mayo M, Hii K, et al.
    PMID: 24145517 DOI: 10.1128/AAC.01842-13
    Melioidosis is a potentially fatal disease caused by the saprophytic bacterium Burkholderia pseudomallei. Resistance to gentamicin is generally a hallmark of B. pseudomallei, and gentamicin is a selective agent in media used for diagnosis of melioidosis. In this study, we determined the prevalence and mechanism of gentamicin susceptibility found in B. pseudomallei isolates from Sarawak, Malaysian Borneo. We performed multilocus sequence typing and antibiotic susceptibility testing on 44 B. pseudomallei clinical isolates from melioidosis patients in Sarawak district hospitals. Whole-genome sequencing was used to identify the mechanism of gentamicin susceptibility. A novel allelic-specific PCR was designed to differentiate gentamicin-sensitive isolates from wild-type B. pseudomallei. A reversion assay was performed to confirm the involvement of this mechanism in gentamicin susceptibility. A substantial proportion (86%) of B. pseudomallei clinical isolates in Sarawak, Malaysian Borneo, were found to be susceptible to the aminoglycoside gentamicin, a rare occurrence in other regions where B. pseudomallei is endemic. Gentamicin sensitivity was restricted to genetically related strains belonging to sequence type 881 or its single-locus variant, sequence type 997. Whole-genome sequencing identified a novel nonsynonymous mutation within amrB, encoding an essential component of the AmrAB-OprA multidrug efflux pump. We confirmed the role of this mutation in conferring aminoglycoside and macrolide sensitivity by reversion of this mutation to the wild-type sequence. Our study demonstrates that alternative B. pseudomallei selective media without gentamicin are needed for accurate melioidosis laboratory diagnosis in Sarawak. This finding may also have implications for environmental sampling of other locations to test for B. pseudomallei endemicity.
    Matched MeSH terms: Aminoglycosides/pharmacology*; Anti-Bacterial Agents/pharmacology*; Gentamicins/pharmacology; Macrolides/pharmacology*
  17. Chan HH, Mustafa FF, Zairi J
    Trop Biomed, 2011 Aug;28(2):464-70.
    PMID: 22041770
    Routine surveillance on resistant status of field mosquito populations is important to implement suitable strategies in order to prevent pest outbreaks. WHO test kit bioassay is the most frequent bioassay used to investigate the susceptibility status of field-collected mosquitoes, as it is relatively convenient to be carried out in the field. In contrast, the topical application of active ingredient is less popular in investigating the susceptibility status of mosquitoes. In this study, we accessed the susceptibility status of Aedes albopictus Skuse collected from two dengue hotspots on Penang Island: Sungai Dua and Persiaran Mayang Pasir. Two active ingredients: permethrin and deltamethrin, were used. WHO test kit bioassay showed that both wild strains collected were susceptible to the two active ingredients; while topical application assay showed that they were resistant. This indicated that WHO test kit bioassay less sensitive to low level of resistance compared to topical application assay. Hence, topical application is expected to be more indicative when used in a resistance surveillance programme.
    Matched MeSH terms: Insecticides/pharmacology*; Nitriles/pharmacology; Pyrethrins/pharmacology; Permethrin/pharmacology
  18. Ang HH, Chan KL, Mak JW
    Folia Parasitol., 1998;45(3):196-8.
    PMID: 9805783
    Five Malaysian isolates of the protozoan Plasmodium falciparum Welch were cultured in vitro following the method of Trager and Jensen (1976, 1977) and subsequently cloned using the limiting dilution method of Rosario (1981). Thirty clones were obtained and were later characterized against schizontocidal drugs, chloroquine, mefloquine and quinine, using the modified in vitro microtechnique. Results showed that these local isolates were heterogeneous and most of the clones exhibited similar pattern of susceptibility as their parent isolate except for ST 168 clone and two ST 195 clones that were sensitive but two ST 165 clones, two ST 168 clones and five ST 195 clones were resistant against quinine, respectively. Results also indicated that they were pure clones compared to their parent isolate because their drug susceptibility studies were significantly different (p < 0.05).
    Matched MeSH terms: Antimalarials/pharmacology*; Chloroquine/pharmacology; Quinine/pharmacology; Mefloquine/pharmacology
  19. Ruszymah BH, Nabishah BM, Aminuddin S, Khalid BA
    Clin. Exp. Pharmacol. Physiol., 1995 Jan;22(1):35-9.
    PMID: 7768032
    1. The aim of this study was to investigate the effect of repeated exposure to stress on tail blood pressure (TBP) of normal as well as GCA (glycyrrhizic acid) and steroid treated rats. Male Sprague-Dawley rats (250 g) were exposed to ether vapour to achieve light anaesthesia prior to TBP recording. Rats were injected with either normal saline or naloxone prior to exposure to stress. Tail blood pressure was recorded daily for 2 weeks. 2. We found that ether stress caused a transient drop in TBP in control as well as in dexamethasone (DEX) treated rats. The stress-induced fall in blood pressure was reduced by naloxone in control rats but not in DEX treated rats. However the transient drop in TBP following stress was not seen in either GCA or deoxycorticosterone (DOC) treated rats. 3. We conclude that first, the reduction in TBP was due to the release of endogenous opioids caused by stress. Second, DOC may block the release of such endogenous opioids, preventing the drop in TBP in response to stress, while DEX did not. Third, GCA caused a similar mineralocorticoid effect on reversing stress induced hypotension.
    Matched MeSH terms: Desoxycorticosterone/pharmacology*; Dexamethasone/pharmacology*; Glycyrrhetinic Acid/pharmacology*; Naloxone/pharmacology
  20. Lew LC, Liong MT
    J. Appl. Microbiol., 2013 May;114(5):1241-53.
    PMID: 23311666 DOI: 10.1111/jam.12137
    Probiotics have been extensively reviewed for decades, emphasizing on improving general gut health. Recently, more studies showed that probiotics may exert other health-promoting effects beyond gut well-being, attributed to the rise of the gut-brain axis correlations. Some of these new benefits include skin health such as improving atopic eczema, atopic dermatitis, healing of burn and scars, skin-rejuvenating properties and improving skin innate immunity. Increasing evidence has also showed that bacterial compounds such as cell wall fragments, their metabolites and dead bacteria can elicit certain immune responses on the skin and improve skin barrier functions. This review aimed to underline the mechanisms or the exact compounds underlying the benefits of bacterial extract on the skin based on evidences from in vivo and in vitro studies. This review could be of help in screening of probiotic strains with potential dermal enhancing properties for topical applications.
    Matched MeSH terms: Diacetyl/pharmacology; Hyaluronic Acid/pharmacology; Lipopolysaccharides/pharmacology; Peptidoglycan/pharmacology; Sphingomyelin Phosphodiesterase/pharmacology; Teichoic Acids/pharmacology; Acetic Acid/pharmacology; Lactic Acid/pharmacology; Probiotics/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links