Displaying all 4 publications

Abstract:
Sort:
  1. Barden A, Phillips M, Mas E, Hill LM, Mowat I, Loh PS, et al.
    PMID: 32084530 DOI: 10.1016/j.prostaglandins.2020.106427
    BACKGROUND: Dexamethasone is commonly given as an antiemetic during surgical procedures. It has immunosuppressive effects and can affect key enzymes involved in the synthesis of specialised lipid mediators of inflammation resolution (SPM) that direct inflammation resolution and have anti-nociceptive actions. This study examined the effect of dexamethasone on plasma SPM, and the relationship between SPM and perceived pain in women undergoing surgery.

    METHODS: Plasma SPM were measured in samples obtained from two double-blind controlled interventions. The first, included 51 women mean age 53 ± 1.5 years, undergoing breast surgery allocated to either intravenous saline, or dexamethasone (4 mg or 8 mg) after induction of anaesthesia. The second study included 31 women of mean age 44 ± 0.5 years undergoing laparoscopic gynecological surgery that were allocated to either saline, or dexamethasone (4 mg). SPM (18-HEPE, 17-HDHA, RvE2, RvD1 17R-RvD1 and RvD2) were measured in plasma collected prior to induction of anaesthesia and at 24 h, and 6 weeks post-surgery. Pain was assessed using a verbal analogue scale at discharge from the post-anaesthesia recovery unit. The data from each study was combined to examine the effect of dexamethasone on plasma SPM. The relationship between pain score and SPM was examined using ordinal logistic regression.

    RESULTS: The SPM 18-HEPE, 17-HDHA, RvE2, RvD1 17R-RvD1 and RvD2 were detectable in all plasma samples. There was no significant difference in any SPM due to dexamethasone over the duration of the study. There was a fall in 17-HDHA between baseline and 24 h in both the dexamethasone and saline groups (P = 0.003) but no change in the downstream SPM (RvD1, 17R-RvD1 and RvD2) or 18-HEPE and RvE2. Pain score was negatively related to levels of RvE2 measured prior to induction of anaesthesia (rho = -0.2991, P = 0.006) and positively related to BMI (rho = 0.279, P = 0.011). In ordinal logistic regression the odds ratio for RvE2 was 0.931 (CI 0.880, 0.986; P = 0.014); after adjusting for the effect of BMI indicating that an increase in RvE2 of 1 pg/ml would result in a 6.9 % fall in pain score. Allocation to a dexamethasone group did not influence the pain score or the relationship between RvE2 and pain score.

    CONCLUSION: Dexamethasone administered as an anti-emetic does not affect plasma SPM levels. An elevated RvE2 level prior to surgery is predictive of a lower perceived pain score post-anaesthesia.

  2. Morvaridzadeh M, Estêvão MD, Morvaridi M, Belančić A, Mohammadi S, Hassani M, et al.
    Prostaglandins Other Lipid Mediat, 2022 Dec;163:106666.
    PMID: 35914666 DOI: 10.1016/j.prostaglandins.2022.106666
    Conjugated Linoleic Acid (CLA) are thought to pose beneficial effects on inflammatory responses and oxidative stress (OS). Thus, the present systematic review and meta-analysis of randomized controlled trials (RCTs) aimed to assess the net effects of CLA supplementation on various OS parameters and antioxidant enzymes. PubMed/MEDLINE, Scopus, Web of Science, and Cochrane Central Register of Controlled Trials databases were searched for publications on CLA supplementation effects on OS parameters up to March 2021. The data extracted from eligible studies were expressed as standardized mean difference with 95% confidence intervals and then combined into meta-analysis using the random-effects model. Overall, 11 RCTs (enrolling 586 participants) met the inclusion criteria and were included in meta-analysis; however, since those trials evaluated different OS parameters, meta-analysis was carried out considering different sets for each parameter separately. According to our results, CLA supplementation significantly increases 8-iso-PGF2α urinary concentration (SMD: 2; 95% CI: 0.74, 3.27; I2 = 87.7%). On contrary, the intervention does not seem to change 15-keto-dihydro-PGF2α urinary concentration, nor the serum levels of CAT, SOD, GPx and MDA. Taken all together, CLA supplementation does not appear to have substantial effects on OS markers in general; albeit due to relatively small sample size and high level of heterogeneity between studies, the obtained findings should be interpreted with caution. Further large well-designed RCTs, investigating the impact of CLA and including various groups of patients, are still needed.
  3. Saadh MJ, Khaleel AQ, Merza MS, Hassan H, Tomar BS, Singh M, et al.
    PMID: 39260819 DOI: 10.1016/j.prostaglandins.2024.106901
    INTRODUCTION: Dyslipidemia with a considerable progression rate is a primary risk factor for CVDs if left untreated. Dietary interventions have explored the health influences of selenium on lipid profiles in adults, yet the findings remain contentious. This study seeks to determine if selenium supplementation can positively modify the lipid profile (total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-C), very-low-density lipoprotein cholesterol (VLDL), and high-density lipoprotein cholesterol (HDL-C) in adults.

    METHODS: Using predefined keywords, we searched online databases, including Scopus, PubMed, Web of Science Core Collection, and Google Scholar, for relevant studies published from inception through July 2024. A random-effects meta-analysis was then employed to pool the weighted mean differences (WMD) and 95% CI for outcomes assessed by a minimum of three studies.

    RESULTS: Initially 1,205 studies were obtained out of which 25 RCTs were decided to be included for further analyses. Selenium supplementation reduced VLDL (WMD: -1.53; 95% CI: -2.86, -0.20), but did not change TG (WMD: 1.12; 95% CI: -4.51, 6.74), TC (WMD: -2.25; 95% CI: -6.80, 2.29), LDL-C (WMD: 1.60; 95% CI: -4.26, 7.46), and HDL-C levels (WMD: 0.98; 95% CI: - 0.02, 1.98).

    CONCLUSION: Our study showed significantly reduced VLDL but limited effects were observed in other lipid indexes. More extensive RCTs are required globally to achieve a holistic comprehension of the connection between selenium and lipid profile.

  4. Muzammil K, Khaleel AQ, Merza MS, Kyada A, Ariffin IA, Verma S, et al.
    PMID: 39243880 DOI: 10.1016/j.prostaglandins.2024.106887
    BACKGROUND & AIMS: Taking into account the anti-inflammatory and antioxidant properties of omega-3 fatty acids and the evidence indicating the role of chronic inflammation and oxidative stress in the pathophysiology diabetes, this study aimed to determine the effect of ω-3 fatty acids on oxidative stress and inflammatory markers in Type 2 diabetes mellitus (T2DM) patients.

    METHODS: A systematic search up to July 30, 2023 was completed in Scopus, PubMed, Web of Science, and Embase databases, to identify eligible RCTs. Heterogeneity tests of the selected studies were performed using the I2. Random effects models were assessed and pooled data were determined as standardized mean differences (SMD) with a 95% CI.

    RESULTS: The meta-analysis of 23 trials, involving 1,523 patients, demonstrated a significant decrease in TNF-α (SMD: -1.62, 95% CI: -2.89 to -0.35, P= 0.013) and increase in TAC (SMD: 0.92, 95% CI: 0.33 to 1.52, P = 0.002) following ω-3 fatty acids administration. Meanwhile, supplementation did not have beneficial effects on malondialdehyde, C-reactive protein (CRP), superoxide dismutase (SOD), and interlukin-6 levels. The subgroup analysis revealed a significant decrease in CRP levels and an increase in SOD levels in studies with durations of less than 12 weeks.

    CONCLUSIONS: We found that ω-3 fatty acid intake can significantly decrease TNF-α and increase TAC levels, but this effect was not observed on other markers. Nevertheless, future well-designed with large sample size and long duration RCT studies with precise ω-3 fatty acids dose and ingredients are required to understand better the effects of these compounds and their constituents on oxidative stress and inflammatory markers in T2DM patients.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links