Displaying publications 1 - 20 of 970 in total

Abstract:
Sort:
  1. Asmah R, Zetti Nadia MZ, Abdah MA, Mohd Fadzelly AB
    Introduction: This research was conducted to investigate the effects of Catharanthus roseus (Kemunting Cina), Kalanchoe laciniata (Setawar Kampung) and Piper longum (Kadok Kampung) on the in vitro proliferation of hormone dependent breast cancer (MCF-7) and colon cancer (Caco2) cell lines. Methodology:The effects of Catharanthus roseus, Kalanchoe laciniata and Piper longum extracts (hexane, chloroform, ethyl acetate and methanol extracts) on the cytotoxicity of MCF-7 and Caco2 cell lines were measured using (3-4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazoliumbromide) (MTT) assay. Results: Kalanchoe laciniata hexane extract showed significant inhibitions on MCF-7 carcinoma cell lines proliferation with IC50 value of 75.7 µg/ml. Catharanthus roseus extracts (hexane, chloroform and ethyl acetate) inhibited MCF-7 cells proliferation at concentrations of 80, 70 and 90 mg/ml, respectively. Discussion: IC50 value of all extracts of Piper longum and Kalanchoe laciniata chloroform, ethyl acetate and methanol extracts on the proliferation of MCF-7 cancer cells could not be determined, as it did not demonstrate any appreciable inhibition on the cellular proliferation at the concentration tested. However, Piper longum chloroform and ethyl acetate extracts showed anti-tumourigenic effect against colon cancer (Caco2) with IC50 of 87 mg/ml and 20 mg/ml, respectively. Kalanchoe laciniata hexane extracts inhibited Caco2 cellular proliferation with IC50 value of 100 mg/ml. Catharanthus roseus chloroform and ethyl acetate extracts inhibited Caco2 proliferation at IC50 of 28.2 µg/ml and 74.1 mg/ml, respectively. Conclusion: From this study, it can be concluded that only hexane extract of Kalanchoe laciniata was effective against cellular proliferations of MCF-7 while Piper longum was more effective in inhibiting Caco2 proliferations. However, both the herbs were not so effective against MCF-7 and Caco2 cell lines compared with Catharanthus roseus. Keywords: Catharanthus roseus, Kalanchoe laciniata, Piper longum, cytotoxicity
    Matched MeSH terms: Cell Line, Tumor
  2. Break MKB, Chiang M, Wiart C, Chin CF, Khoo ASB, Khoo TJ
    Nutr Cancer, 2021;73(3):473-483.
    PMID: 32270712 DOI: 10.1080/01635581.2020.1751217
    Boesenbergia rotunda (L.) Mansf. is an edible herb that is commonly used in the cuisine of several Asian countries. Studies have shown that it possesses high bioactivity against a variety of cancer cells. In this study, we investigated the cytotoxic activity of Boesenbergia rotunda rhizomes and some of its constituents on nasopharyngeal carcinoma cells (HK1). MTT assay results showed that the methanolic and hexane extracts of Boesenbergia rotunda decreased HK1 cell viability with IC50 values of 136 µg/ml and 66 µg/ml, respectively. Cardamonin, a constituent of Boesenbergia rotunda, exhibited the highest cytotoxic activity with an IC50 value of 27 μg/ml. Further studies on cardamonin revealed that it inhibited the migration of HK1 cells, caused G2/M-phase arrest and induced apoptosis. Apoptosis was induced via activating caspase-8 and caspase-3, but independent of caspase-9. This indicated that cardamonin induced extrinsic apoptosis. Western blot analysis further showed that cardamonin caused extrinsic apoptosis, as the expression levels of intrinsic apoptosis-related proteins (Bcl-XL, Bcl-2 and Bax), were not affected. Finally, JC-1 staining of HK1 cells revealed an increase in the mitochondrial membrane potential after treatment, further proving that cardamonin did not induce apoptosis via the intrinsic pathway. These results reflect cardamonin's potential as an anticancer agent.
    Matched MeSH terms: Cell Line, Tumor
  3. Li HY, Lin HC, Huang BJ, Kai Lo AZ, Saidin S, Lai CH
    Langmuir, 2020 09 29;36(38):11374-11382.
    PMID: 32902993 DOI: 10.1021/acs.langmuir.0c02297
    Recently, studies on the development and investigation of carbohydrate-functionalized silica nanoparticles (NPs) and their biomedicine applications such as cell-specific targeting and bioimaging has been carried out extensively. Since the number of breast cancer patients has been growing in recent years, potential NPs were being studied in this project for targeting breast cancer cells. Mannose receptors can be found on the surface of MDA-MB-231, which is a kind of human breast cancer cell line. Therefore, we decorated a cyanine 3 fluorescent dye (Cy3) and mannosides on the surface of silica NPs for the purpose of imaging and targeting. Galactoside was also introduced onto the surface of silica NPs acting as a control sample. Various sizes of silica NPs were synthesized by using different amounts of ammonium to investigate the effect of the size of NPs on the cellular uptake rate. The physical properties of these NPs were characterized by scanning electron microscope, dynamic light scattering, and their zeta potential. Cellular experiments demonstrated that mannoside-modified NPs can be uptaken by MDA-MB-231. From the experiment, we found out that the best cellular uptake rate of nanoparticle size is about 250 nm. The MTT assay showed that Man@Cy3SiO2NPs are not cytotoxic, indicating they may have the potential for biomedical applications.
    Matched MeSH terms: Cell Line, Tumor
  4. Heng WS, Pore M, Meijer C, Hiltermann TJN, Cheah SC, Gosens R, et al.
    Lung Cancer, 2021 04;154:13-22.
    PMID: 33607458 DOI: 10.1016/j.lungcan.2021.02.002
    OBJECTIVES: Cancer stem cells (CSCs) have been implicated in disease progression of aggressive cancers including small cell lung carcinoma (SCLC). Here, we have examined the possible contribution of CSCs to SCLC progression and aggressiveness.

    MATERIALS AND METHODS: GLC-14, GLC-16 and GLC-19 SCLC cell lines derived from one patient, representing increasing progressive stages of disease were used. CSC marker expressions was determined by RT-qPCR and western blotting analyses, and heterogeneity was studied by CSC marker expression by immunofluorescence microscopy and flow cytometry. Colony formation assays were used to assess stem cell properties and therapy sensitivity.

    RESULTS: Increasing expression of stem cell markers MYC, SOX2 and particularly CD44 were found in association with advancing disease. Single and overlapping expression of these markers indicated the presence of different CSC populations. The accumulation of more homogeneous double- and triple-positive CSC populations evolved with disease progression. Functional characterization of CSC properties affirmed higher proficiency of colony forming ability and increased resistance to γ-irradiation in GLC-16 and GLC-19 compared to GLC-14. GLC-19 colony formation was significantly inhibited by a human anti-CD44 antibody.

    CONCLUSION: The progressive increase of MYC, SOX2 and particularly CD44 expression that was accompanied with enhanced colony forming capacity and resistance in the in vitro GLC disease progression model, supports the potential clinical relevance of CSC populations in malignancy and disease relapse of SCLC.

    Matched MeSH terms: Cell Line, Tumor
  5. Ong YS, Bañobre-López M, Costa Lima SA, Reis S
    Mater Sci Eng C Mater Biol Appl, 2020 Nov;116:111255.
    PMID: 32806240 DOI: 10.1016/j.msec.2020.111255
    Methotrexate (MTX), an anti-neoplastic agent used for breast cancer treatment, has restricted clinical applications due to poor water solubility, non-specific targeting and adverse side effects. To overcome these limitations, MTX was co-encapsulated with an active-targeting platform known as superparamagnetic iron oxide nanoparticles (SPIONs) in a lipid-based homing system, nanostructured lipid carrier (NLC). This multi-modal therapeutic regime was successfully formulated with good colloidal stability, bio- and hemo-compatibility. MTX-SPIONs co-loaded NLC was time-dependent cytotoxic towards MDA-MB-231 breast cancer cell line with IC50 values of 137 μg/mL and 12 μg/mL at 48 and 72 h, respectively. The MTX-SPIONs co-loaded NLC was internalized in the MDA-MB-231 cells via caveolae-mediated endocytosis in a time-dependent manner, and the superparamagnetic properties were sufficient to induce, under a magnetic field, a localized temperature increase at cellular level resulting in apoptotic cell death. In conclusion, MTX-SPIONs co-loaded NLC is a potential magnetic guiding multi-modal therapeutic system for the treatment of breast cancer.
    Matched MeSH terms: Cell Line, Tumor
  6. Razali NSC, Lam KW, Rajab NF, A Jamal AR, Kamaluddin NF, Chan KM
    Sci Rep, 2022 07 30;12(1):13131.
    PMID: 35907913 DOI: 10.1038/s41598-022-16274-4
    Curcumin has demonstrated potential cytotoxicity across various cell lines despite its poor bioavailability and rapid metabolism. Therefore, our group have synthesized curcuminoid analogues with piperidone derivatives, FLDP-5 and FLDP-8 to overcome these limitations. In this study, the analogues were assessed on LN-18 human glioblastoma cells in comparison to curcumin. Results from cytotoxicity assessment showed that FLDP-5 and FLDP-8 curcuminoid analogues caused death in LN-18 cells in a concentration-dependent manner after 24-h treatment with much lower IC50 values of 2.5 µM and 4 µM respectively, which were more potent compared to curcumin with IC50 of 31 µM. Moreover, a significant increase (p cell death process induced by these analogues. These analogues also showed potent anti-migratory effects through inhibition of LN-18 cells' migration and invasion. In addition, cell cycle analysis showed that these analogues are capable of inducing significant (p cell cycle arrest during the 24-h treatment as compared to untreated, which explained the reduced proliferation indicated by MTT assay. In conclusion, these curcuminoid analogues exhibit potent anti-cancer effects with anti-proliferative and anti-migratory properties towards LN-18 cells as compared to curcumin.
    Matched MeSH terms: Cell Line, Tumor
  7. Ukrainskaya V, Rubtsov Y, Pershin D, Podoplelova N, Terekhov S, Yaroshevich I, et al.
    Small, 2021 11;17(45):e2102643.
    PMID: 34605165 DOI: 10.1002/smll.202102643
    Development of CAR-T therapy led to immediate success in the treatment of B cell leukemia. Manufacturing of therapy-competent functional CAR-T cells needs robust protocols for ex vivo/in vitro expansion of modified T-cells. This step is challenging, especially if non-viral low-efficiency delivery protocols are used to generate CAR-T cells. Modern protocols for CAR-T cell expansion are imperfect since non-specific stimulation results in rapid outgrowth of CAR-negative T cells, and removal of feeder cells from mixed cultures necessitates additional purification steps. To develop a specific and improved protocol for CAR-T cell expansion, cell-derived membrane vesicles are taken advantage of, and the simple structural demands of the CAR-antigen interaction. This novel approach is to make antigenic microcytospheres from common cell lines stably expressing surface-bound CAR antigens, and then use them for stimulation and expansion of CAR-T cells. The data presented in this article clearly demonstrate that this protocol produced antigen-specific vesicles with the capacity to induce stronger stimulation, proliferation, and functional activity of CAR-T cells than is possible with existing protocols. It is predicted that this new methodology will significantly advance the ability to obtain improved populations of functional CAR-T cells for therapy.
    Matched MeSH terms: Cell Line, Tumor
  8. Nik Nabil WN, Xi Z, Song Z, Jin L, Zhang XD, Zhou H, et al.
    Cells, 2021 03 05;10(3).
    PMID: 33807533 DOI: 10.3390/cells10030562
    Quiescent cancer cells (QCCs) are cancer cells that are reversibly suspended in G0 phase with the ability to re-enter the cell cycle and initiate tumor growth, and, ultimately, cancer recurrence and metastasis. QCCs are also therapeutically challenging due to their resistance to most conventional cancer treatments that selectively act on proliferating cells. Considering the significant impact of QCCs on cancer progression and treatment, better understanding of appropriate experimental models, and the evaluation of QCCs are key questions in the field that have direct influence on potential pharmacological interventions. Here, this review focuses on existing and emerging preclinical models and detection methods for QCCs and discusses their respective features and scope for application. By providing a framework for selecting appropriate experimental models and investigative methods, the identification of the key players that regulate the survival and activation of QCCs and the development of more effective QCC-targeting therapeutic agents may mitigate the consequences of QCCs.
    Matched MeSH terms: Cell Line, Tumor
  9. Cheong JK, Ooi EH, Chiew YS, Menichetti L, Armanetti P, Franchini MC, et al.
    Comput Methods Programs Biomed, 2023 Mar;230:107363.
    PMID: 36720181 DOI: 10.1016/j.cmpb.2023.107363
    BACKGROUND AND OBJECTIVES: Gold nanorod-assisted photothermal therapy (GNR-PTT) is a cancer treatment whereby GNRs incorporated into the tumour act as photo-absorbers to elevate the thermal destruction effect. In the case of bladder, there are few possible routes to target the tumour with GNRs, namely peri/intra-tumoural injection and intravesical instillation of GNRs. These two approaches lead to different GNR distribution inside the tumour and can affect the treatment outcome.

    METHODOLOGY: The present study investigates the effects of heterogeneous GNR distribution in a typical setup of GNR-PTT. Three cases were considered. Case 1 considered the GNRs at the tumour centre, while Case 2 represents a hypothetical scenario where GNRs are distributed at the tumour periphery; these two cases represent intratumoural accumulation with different degree of GNR spread inside the tumour. Case 3 is achieved when GNRs target the exposed tumoural surface that is invading the bladder wall, when they are delivered by intravesical instillation.

    RESULTS: Results indicate that for a laser power of 0.6 W and GNR volume fraction of 0.01%, Case 2 and 3 were successful in achieving complete tumour eradication after 330 and 470 s of laser irradiation, respectively. Case 1 failed to form complete tumour damage when the GNRs are concentrated at the tumour centre but managed to produce complete tumour damage if the spread of GNRs is wider. Results from Case 2 also demonstrated a different heating profile from Case 1, suggesting that thermal ablation during GNR-PTT is dependant on the GNRs distribution inside the tumour. Case 3 shows similar results to Case 2 whereby gradual but uniform heating is observed. Cases 2 and 3 show that uniformly heating the tumour can reduce damage to the surrounding tissues.

    CONCLUSIONS: Different GNR distribution associated with the different methods of introducing GNRs to the bladder during GNR-PTT affect the treatment outcome of bladder cancer in mice. Insufficient spreading during intratumoural injection of GNRs can render the treatment ineffective, while administered via intravesical instillation. GNR distribution achieved through intravesical instillation present some advantages over intratumoural injection and is worthy of further exploration.

    Matched MeSH terms: Cell Line, Tumor
  10. Hashemi M, Nadafzadeh N, Imani MH, Rajabi R, Ziaolhagh S, Bayanzadeh SD, et al.
    Cell Commun Signal, 2023 Feb 09;21(1):32.
    PMID: 36759819 DOI: 10.1186/s12964-023-01053-z
    Autophagy is an evolutionarily conserved process that plays a role in regulating homeostasis under physiological conditions. However, dysregulation of autophagy is observed in the development of human diseases, especially cancer. Autophagy has reciprocal functions in cancer and may be responsible for either survival or death. Hepatocellular carcinoma (HCC) is one of the most lethal and common malignancies of the liver, and smoking, infection, and alcohol consumption can lead to its development. Genetic mutations and alterations in molecular processes can exacerbate the progression of HCC. The function of autophagy in HCC is controversial and may be both tumor suppressive and tumor promoting. Activation of autophagy may affect apoptosis in HCC and is a regulator of proliferation and glucose metabolism. Induction of autophagy may promote tumor metastasis via induction of EMT. In addition, autophagy is a regulator of stem cell formation in HCC, and pro-survival autophagy leads to cancer cell resistance to chemotherapy and radiotherapy. Targeting autophagy impairs growth and metastasis in HCC and improves tumor cell response to therapy. Of note, a large number of signaling pathways such as STAT3, Wnt, miRNAs, lncRNAs, and circRNAs regulate autophagy in HCC. Moreover, regulation of autophagy (induction or inhibition) by antitumor agents could be suggested for effective treatment of HCC. In this paper, we comprehensively review the role and mechanisms of autophagy in HCC and discuss the potential benefit of targeting this process in the treatment of the cancer. Video Abstract.
    Matched MeSH terms: Cell Line, Tumor
  11. Liew K, Yong PV, Navaratnam V, Lim YM, Ho AS
    Phytomedicine, 2015 May 15;22(5):517-27.
    PMID: 25981917 DOI: 10.1016/j.phymed.2015.03.007
    We have previously reported the anti-metastatic effects of 2-methoxy-1,4-naphthoquinone (MNQ) against MDA-MB-231 cell line.
    Matched MeSH terms: Cell Line, Tumor/drug effects
  12. Shah PS, Link N, Jang GM, Sharp PP, Zhu T, Swaney DL, et al.
    Cell, 2018 12 13;175(7):1931-1945.e18.
    PMID: 30550790 DOI: 10.1016/j.cell.2018.11.028
    Mosquito-borne flaviviruses, including dengue virus (DENV) and Zika virus (ZIKV), are a growing public health concern. Systems-level analysis of how flaviviruses hijack cellular processes through virus-host protein-protein interactions (PPIs) provides information about their replication and pathogenic mechanisms. We used affinity purification-mass spectrometry (AP-MS) to compare flavivirus-host interactions for two viruses (DENV and ZIKV) in two hosts (human and mosquito). Conserved virus-host PPIs revealed that the flavivirus NS5 protein suppresses interferon stimulated genes by inhibiting recruitment of the transcription complex PAF1C and that chemical modulation of SEC61 inhibits DENV and ZIKV replication in human and mosquito cells. Finally, we identified a ZIKV-specific interaction between NS4A and ANKLE2, a gene linked to hereditary microcephaly, and showed that ZIKV NS4A causes microcephaly in Drosophila in an ANKLE2-dependent manner. Thus, comparative flavivirus-host PPI mapping provides biological insights and, when coupled with in vivo models, can be used to unravel pathogenic mechanisms.
    Matched MeSH terms: Cell Line, Tumor
  13. Sharma A, Hawthorne S, Jha SK, Jha NK, Kumar D, Girgis S, et al.
    Nanomedicine (Lond), 2021 08;16(20):1763-1773.
    PMID: 34296625 DOI: 10.2217/nnm-2021-0066
    Aim: This study was aimed at evaluating the anticancer potential of curcumin-loaded poly(lactic-co-glycolic acid) (PLGA) based nanoparticles (NPs) in MDA-MB231 human breast cancer cells. Methods: Curcumin-loaded PLGA NPs were developed using a modified solvent evaporation technique. Physical characterization was performed on the formulated NPs. Furthermore, in vitro experiments were conducted to study the biological activity of the curcumin-loaded NPs. Results: Curcumin-loaded PLGA NPs demonstrated high encapsulation efficiency and sustained payload release. Moreover, the NPs exhibited a significant reduction in cell viability, cell migration and cell invasion in the MDA-MB231 cells. Conclusion: The study revealed that the formulated curcumin-loaded PLGA NPs possessed significant anti-metastatic properties. The findings showcased the possible potential of curcumin-loaded NPs in the management of debilitating conditions such as cancer. In addition, this study could form the basis for further research and advancements in this area.
    Matched MeSH terms: Cell Line, Tumor
  14. Abd Razak N, Yeap SK, Alitheen NB, Ho WY, Yong CY, Tan SW, et al.
    Integr Cancer Ther, 2020 8 25;19:1534735420935625.
    PMID: 32830560 DOI: 10.1177/1534735420935625
    Eupatorin is a polymethoxy flavone extracted from Orthosiphon stamineus and was reported to exhibit cytotoxic effects on several cancer cell lines. However, its effect as an anti-breast cancer agent in vivo has yet to be determined. This study aims to elucidate the potential of eupatorin as an anti-breast cancer agent in vivo using 4T1 challenged BALB/c mice model. In this article, BALB/c mice (20-22 g) challenged with 4T1 cells were treated with 5 mg/kg or 20 mg/kg eupatorin, while the untreated and healthy mice were fed with olive oil (vehicle) via oral gavage. After 28 days of experiment, the mice were sacrificed and blood was collected for serum cytokine assay, while tumors were harvested to extract RNA and protein for gene expression assay and hematoxylin-eosin staining. Organs such as spleen and lung were harvested for immune suppression and clonogenic assay, respectively. Eupatorin (20 mg/kg) was effective in delaying the tumor development and reducing metastasis to the lung compared with the untreated mice. Eupatorin (20 mg/kg) also enhanced the immunity as the population of NK1.1+ and CD8+ in the splenocytes and the serum interferon-γ were increased. Concurrently, eupatorin treatment also has downregulated the expression of pro-inflammatory and metastatic related genes (IL-1β. MMP9, TNF-α, and NF-κB). Thus, this study demonstrated that eupatorin at the highest dosage of 20 mg/kg body weight was effective in delaying the 4T1-induced breast tumor growth in the animal model.
    Matched MeSH terms: Cell Line, Tumor
  15. Kumar AVP, Dubey SK, Tiwari S, Puri A, Hejmady S, Gorain B, et al.
    Int J Pharm, 2021 Sep 05;606:120848.
    PMID: 34216762 DOI: 10.1016/j.ijpharm.2021.120848
    Photothermal therapy (PTT) is a minimally invasive procedure for treating cancer. The two significant prerequisites of PTT are the photothermal therapeutic agent (PTA) and near-infrared radiation (NIR). The PTA absorbs NIR, causing hyperthermia in the malignant cells. This increased temperature at the tumor microenvironment finally results in tumor cell damage. Nanoparticles play a crucial role in PTT, aiding in the passive and active targeting of the PTA to the tumor microenvironment. Through enhanced permeation and retention effect and surface-engineering, specific targeting could be achieved. This novel delivery tool provides the advantages of changing the shape, size, and surface attributes of the carriers containing PTAs, which might facilitate tumor regression significantly. Further, inclusion of surface engineering of nanoparticles is facilitated through ligating ligands specific to overexpressed receptors on the cancer cell surface. Thus, transforming nanoparticles grants the ability to combine different treatment strategies with PTT to enhance cancer treatment. This review emphasizes properties of PTAs, conjugated biomolecules of PTAs, and the combinatorial techniques for a better therapeutic effect of PTT using the nanoparticle platform.
    Matched MeSH terms: Cell Line, Tumor
  16. Wahab NA, Othman Z, Nasri NWM, Mokhtar MH, Ibrahim SF, Hamid AA, et al.
    PMID: 32316405 DOI: 10.3390/ijerph17082766
    The role of microRNA (miRNA) in ovarian cancer has been extensively studied as a regulator for its targeted genes. However, its specific role in metastatic serous ovarian cancer (SOC) is yet to be explored. This paper aims to investigate the differentially expressed miRNAs in metastatic SOC compared to normal. Locked nucleic acid PCR was performed to profile miRNA expression in 11 snap frozen metastatic SOC and 13 normal ovarian tissues. Functional analysis and regulation of their targeted genes were assessed in vitro. Forty-eight miRNAs were significantly differentially expressed in metastatic SOC as compared to normal. MiR-19a is a novel miRNA to be upregulated in metastatic SOC compared to normal. DLC1 is possibly regulated by miR-141 in SOC. MiR-141 inhibition led to significantly reduced cell viability. Cell migration and invasion were significantly increased following miRNA inhibition. This study showed the aberrantly expressed miRNAs in metastatic SOC and the roles of miRNAs in the regulation of their targeted genes and ovarian carcinogenesis.
    Matched MeSH terms: Cell Line, Tumor
  17. Ang KP, Chan PF, Hamid RA
    J Biol Inorg Chem, 2021 10;26(7):833-853.
    PMID: 34476610 DOI: 10.1007/s00775-021-01892-6
    Tricyclohexylphosphanegold(I) n-mercaptobenzoate (n = 2, 3, 4) labelled as 1-3 were previously reported to significantly suppress thioredoxin reductase (TrxR) activities towards ovarian cancer cells, A2780, in vitro. Herein, we explored the role of 1-3 for their apoptosis inducing ability against A2780 cells. 1-3 exhibited IC50 values at 1.19 ± 0.03 µM, 2.28 ± 0.04 μM and 0.78 ± 0.01 μM, respectively, compared to cisplatin at 26.8 ± 0.15 µM. The compounds induced A2780 apoptosis via a caspase-dependent mitochondrion pathway as evidenced by ROS production, cytochrome c release, caspases-3/7, -8, -9 and -10 activation, APAF1 and BAX upregulation as well as BCL2A1 and BCL2 genes' downregulation. In addition, the death mode of 1-3 was also mediated via death receptor extrinsic pathway manifested by FAS, FASL, FADD, and TNFR1 genes' upregulation via Human Rt PCR analysis. In addition, 1-3 significantly caused A2780 arrest at S phase, which was associated with the upregulation of TP53, E2F1, RB1 and CDKN1A upregulation and downregulation of CDK1, CDK4, CDC25A and CDC25C genes. Based on these promising results, these phosphanegold(I) thiolate derivatives could act as feasible candidates for further advanced in vivo ovarian cancer studies to develop novel chemotherapeutic agents derived from metal-based agents.
    Matched MeSH terms: Cell Line, Tumor
  18. Naqeebullah, Farina Y, Chan KM, Mun LK, Rajab NF, Ooi TC
    Molecules, 2013 Jul 22;18(7):8696-711.
    PMID: 23881054 DOI: 10.3390/molecules18078696
    Three diorganotin(IV) complexes of the general formula R2Sn[RcC(O)N(RN)O] (Rc = aryl, RN = Alkyl) have been synthesized by refluxing in toluene the corresponding diorganotin(IV) oxides with the free ligand N-methyl p-fluorobenzohydroxamic acid, using a Dean and Stark water separator. The ligand was derived from the reaction of the corresponding p-fluorobenzoyl chloride and N-methylhydroxylamine hydrochloride in the presence of sodium hydrogen carbonate. The isolated free ligand and its respective diorganotin compounds have been characterized by elemental analysis, IR and 1H-, 13C-, 119Sn-NMR spectroscopies. The crystal structures of the diorganotin complexes have been confirmed by single crystal X-ray diffraction methods. The investigations carried out on the diorganotin(IV) complexes of N-methyl p-fluorobenzohydroxamic acid confirmed a 1:2 stoichiometry. The complex formation took place through the O,O-coordination via the carbonyl oxygen and subsequent deprotonated hydroxyl group to the tin atom. The crystal structures of three diorganotin complexes were determined and were found to adopt six coordination geometries at the tin centre with coordination to two ligand moieties.
    Matched MeSH terms: Cell Line, Tumor
  19. Yeap SK, Abu N, Mohamad NE, Beh BK, Ho WY, Ebrahimi S, et al.
    PMID: 26335427 DOI: 10.1186/s12906-015-0832-z
    The progression of breast cancer is increasing at an alarming rate, particularly in western countries. Meanwhile, the lower incidence in Asian countries could be attributed to the heavy incorporation of green leaves vegetables or spices in their diets. Murraya koenigii (MK) or often times known as curry leaves are common spice used mostly in tropical countries. Anti-inflammatory and chemopreventive effects of MK aqueous extract on 4T1 breast cancer cell-challenged mice were evaluated.
    Matched MeSH terms: Cell Line, Tumor
  20. Holland I, Bakri YM, Sakoff J, Zaleta Pinet D, Motti C, van Altena I
    Phytochemistry, 2021 Aug;188:112798.
    PMID: 34020274 DOI: 10.1016/j.phytochem.2021.112798
    As part of our ongoing study of the specialised metabolites present in brown algae belonging to the Cystophora genus, eight new steroids including three pairs of diastereoisomers were isolated from Cystophora xiphocarpa (Harvey) (Sargassacea, Fucales). The metabolites identified by standard spectrometric methods are (16S,22S)-16,22-dihydroxyergosta-4,24(28)-dien-3-one and (16S,22R)-16,22-dihydroxyergosta-4,24(28)-dien-3-one, (16S,22S,24R)-16,22,24-trihydroxyporifera-4,28-dien-3-one and (16S,22S,24S)-16,22,24-trihydroxystigma-4,28-dien-3-one along with (16S,22S,24E)-16,22-dihydroxystigma-4,24(28)-dien-3-one and (16S,20S)-16,20-dihydroxyergosta-4,24(28)-dien-3-one. (16S,22S,24E)-16,22-Dihydroxystigma-4,24(28)-dien-3-one possessed the most potent cytotoxicity of the steroids in this series with cell growth inhibitions of GI50 8.7 ± 0.7 μM against colon cancer HT29, GI50 5.6 ± 0.8 μM against the breast cancer line MCF-7 and GI50 4.5 ± 0.2 μM against the ovarian cancer cell line A2780. (16S,22R)-16,22-dihydroxyergosta-4,24(28)-dien-3-one was found to be active against the ovarian cancer cell line A2780 with a GI50 of 6.2 ± 0.1 μM.
    Matched MeSH terms: Cell Line, Tumor
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links