Methods: We conducted a cross-sectional study over one year from January to December 2018 in the Transfusion Medicine Unit, Hospital Universiti Sains Malaysia. A total of 249 samples were recruited from CKD patients who received a blood transfusion (at least one-pint), which only match for ABO and Rh(D) antigen. The serum was screened for the presence of the RBC antibody using the gel agglutination technique (Diamed gel cards). Samples with positive antibody screening were subjected to antibody identification.
Results: Of the 249 transfused CKD patients, 31 (12.4%) developed RBC immunization. Thirty (12%) were alloimmunized, and one (0.4%) was autoimmunized. Anti-Mia was the most common antibody (n = 14, 46.7%) among alloantibodies, followed by anti-E (n = 7, 23.3%). There was a significant association between pregnancy history with the development of antibodies whereas, no significant association was found between sociodemographic background, stage of CKD, hemodialysis status, underlying medical illness, and number of packed cell transfusions with the development of RBC antibodies.
Conclusions: One-eighth of our patient cohort had RBC alloimmunization, and the risk was increased in patients with a history of pregnancy. We propose Rhesus RBC phenotyping and to supply blood match Rhesus antigen in CKD patients, especially patients of reproductive age.
Methods: This is a comparative cross-sectional study on two cohorts of pre-clinical medical students who were selected by multiple mini interviews and personal interview, respectively. Their personality traits, emotional intelligence, perceived educational environment, and perceived stressors were measured using different measurement tools.
Results: Multiple mini interviews and personal interview demonstrated a similar ability to recruit medical students with a high level of emotional intelligence. The main advantage of personal interviews over multiple mini interviews in terms of personality traits is that it recruited candidates who had a higher level of conscientiousness trait. The main advantage of multiple mini interviews over personal interview on the educational environment is that medical students chosen by multiple mini interviews had a higher level of satisfaction with social aspects of medical training. Regardless of admission processes, the medical students were equally vulnerable to psychological distress due to various stressful events throughout medical training particularly related to academic loads.
Conclusions: This study provided evidence to support the outcomes that multiple mini interviews and personal interview have on medical students' emotional intelligence, personality traits, perceived educational environment, and perceived stressors during the pre-clinical medical training. Interestingly, personal interview had a better outcome on conscientiousness while multiple mini interviews had a better outcome on the social aspect.
Methods: Donated blood units were assessed for the presence or absence of HBV, HCV, and HIV using two screening method: serology and NAT. Reactive blood samples were then subjected to serological confirmatory and NAT discriminatory assays.
Results: A total of 9669 donors were recruited from September 2017 to June 2018. Among these, 36 donors were reactive either for HBV, HCV, or HIV by serological testing and eight by NAT screening. However, only 10 (three for HBV and seven for HCV) donors tested positive using serological testing and five (two for HBV and three for HCV) by NAT discriminatory assays. Note that all five NAT positive donors detected in the NAT discriminatory assays were confirmed to be serologically reactive. Therefore, the prevalence of HBV, HCV, and HIV was 0.03%, 0.1%, and 0.0%, respectively, in our donor pool.
Conclusions: Both serological and NAT screening and confirmatory assays should be used routinely to reduce the risk of infection transmission via the transfusion of blood and blood components.
Methods: We conducted a retrospective review of 70 patients with LPD (35 with lymphoma and 35 with multiple myeloma) who had undergone APBSCT between January 2008 and December 2016. Data obtained included disease type, treatment, and stem cell characteristics. Kaplan-Meier analysis was performed for probabilities of neutrophil and platelet engraftment occurred and was compared by the log-rank test. The multivariate Cox proportional hazards regression model was used for the analysis of potential independent factors influencing engraftment. A p-value < 0.050 was considered statistically significant.
Results: Most patients were ethnic Malay, the median age at transplantation was 49.5 years. Neutrophil and platelet engraftment occurred in a median time of 18 (range 4-65) and 17 (range 6-66) days, respectively. The majority of patients showed engraftment with 65 (92.9%) and 63 (90.0%) showing neutrophil and platelet engraftment, respectively. We observed significant differences between neutrophil engraftment and patient's weight (< 60/≥ 60 kg), stage of disease at diagnosis, number of previous chemotherapy cycles (< 8/≥ 8), and pre-transplant radiotherapy. While for platelet engraftment, we found significant differences with gender, patient's weight (< 60/≥ 60 kg), pre-transplant radiotherapy, and CD34+ dosage (< 5.0/≥ 5.0 × 106/kg and < 7.0/≥ 7.0 × 106/kg). The stage of disease at diagnosis (p = 0.012) and pre-transplant radiotherapy (p = 0.025) were found to be independent factors for neutrophil engraftment whereas patient's weight (< 60/≥ 60 kg, p = 0.017), age at transplantation (< 50/≥ 50 years, p = 0.038), and CD34+ dosage (< 7.0/≥ 7.0 × 106/kg, p = 0.002) were found to be independent factors for platelet engraftment.
Conclusions: Patients with LPD who presented at an early stage and with no history of radiotherapy had faster neutrophil engraftment after APBSCT, while a younger age at transplantation with a higher dose of CD34+ cells may predict faster platelet engraftment. However, additional studies are necessary for better understanding of engraftment kinetics to improve the success of APBSCT.