Displaying publications 1 - 20 of 379 in total

Abstract:
Sort:
  1. Lin L, Xiong J, Yue T, Xu W, Liu L, Wang F, et al.
    Sci Total Environ, 2024 Jun 10;928:172575.
    PMID: 38641105 DOI: 10.1016/j.scitotenv.2024.172575
    Phosphorus (P) plays an important role in regulating primary production in estuarine environments. However, knowledge of the P-functional gene composition of microbial communities and the mechanisms of microbial adaptation to changes in available P in estuaries remain limited. This study coupling 16 s rDNA and metagenomics sequencing was conducted to reveal the relationship between P cycling functional genes, microbial interactions, and P availability in the Jiulong River Estuary. The results showed that the relative abundance of P cycling functions genes was highest in winter, and lowest in summer. Spatially, the total relative abundance of P cycling functions genes was higher in the riverward than that in the seaward. P cycling functional microbial interactions and P cycling gene coupling were strongest in summer and in the seaward. Changes in both temperature and salinity had significant direct and indirect effects on P cycling function, and the influence of salinity on P cycling function was greater than that on the microbial community in the estuary. Salinity had significant direct negative effects on inorganic P-solubilization (IP), organic P-mineralization (OP), and P uptake and transport functions (PT). Whereas, salinity had a significant positive effect on P-starvation response regulation (PR) function. Thus, salinity and microbial communities regulate the soluble reactive phosphate concentrations in estuarine environments by strengthening internal coupling among P cycling functions, promoting PR function, and facilitating PT gene expression. PR is the most important predictors, PR, PT, and PR-PT together explained 38.56 % of the overall soluble reactive phosphorus (SRP) variation. Over 66 % of the explained SRP variations can be predicted by the PR, PT, and PR-PT functional genes. This finding improves the knowledge base of the microbial processes for P cycling and provides a foundation for eutrophication management strategies in the estuary.
  2. Junaid M, Hamid N, Liu S, Abbas Z, Imran M, Haider MR, et al.
    Sci Total Environ, 2024 Jun 01;927:172213.
    PMID: 38580116 DOI: 10.1016/j.scitotenv.2024.172213
    In the environment, sunlight or ultraviolet (UV) radiation is considered to be the primary cause of plastic aging, leading to their fragmentation into particles, including micro(nano)plastics (MNPs). Photoaged MNPs possess diverse interactive properties and ecotoxicological implications substantially different from those of pristine plastic particles. This review aims to highlight the mechanisms and implications of UV-induced photoaging of MNPs, with an emphasis on various UV sources and their interactions with co-occurring organic and inorganic chemicals, as well as the associated ecological and health impacts and factors affecting those interactions. Compared to UV-B, UV-A and UV-C were more widely used in laboratory studies for MNP degradation. Photoaged MNPs act as vectors for the transportation of organic pollutants, organic matter, and inorganic chemicals in the environment. Literature showed that photoaged MNPs exhibit a higher sorption capacity for PPCPs, PAHs, PBDEs, pesticides, humic acid, fulvic acid, heavy metals, and metallic nanoparticles than pristine MNPs, potentially causing significant changes in associated ecological and health impacts. Combined exposure to photoaged MNPs and organic and inorganic pollutants significantly altered mortality rate, decreased growth rate, histological alterations, neurological impairments, reproductive toxicity, induced oxidative stress, thyroid disruption, hepatotoxicity, and genotoxicity in vivo, both in aquatic and terrestrial organisms. Limited studies were reported in vitro and found decreased cellular growth and survival, induced oxidative stress, and compromised the permeability and integrity of the cell membrane. In addition, several environmental factors (temperature, organic matter, ionic strength, time, and pH), MNP properties (polymer types, sizes, surface area, shapes, colour, and concentration), and chemical properties (pollutant type, concentration, and physiochemical properties) can influence the photoaging of MNPs and associated impacts. Lastly, the research gaps and prospects of MNP photoaging and associated implications were also summarized. Future research should focus on the photoaging of MNPs under environmentally relevant conditions, exploiting the polydisperse characteristics of environmental plastics, to make this process more realistic for mitigating plastic pollution.
  3. Masud MAA, Shin WS, Septian A, Samaraweera H, Khan IJ, Mohamed MM, et al.
    Sci Total Environ, 2024 May 20;926:171944.
    PMID: 38527542 DOI: 10.1016/j.scitotenv.2024.171944
    Fluoroquinolone (FQ) antibiotics have become a subject of growing concern due to their increasing presence in the environment, particularly in the soil and groundwater. This review provides a comprehensive examination of the attributes, prevalence, ecotoxicity, and remediation approaches associated with FQs in environmental matrices. The paper discusses the physicochemical properties that influence the fate and transport of FQs in soil and groundwater, exploring the factors contributing to their prevalence in these environments. Furthermore, the ecotoxicological implications of FQ contamination in soil and aquatic ecosystems are reviewed, shedding light on the potential risks to environmental and human health. The latter part of the review is dedicated to an extensive analysis of remediation approaches, encompassing both in-situ and ex-situ methods employed to mitigate FQ contamination. The critical evaluation of these remediation strategies provides insights into their efficacy, limitations, and environmental implications. In this investigation, a correlation between FQ antibiotics and climate change is established, underlining its significance in addressing the Sustainable Development Goals (SDGs). The study further identifies and delineates multiple research gaps, proposing them as key areas for future investigational directions. Overall, this review aims to consolidate current knowledge on FQs in soil and groundwater, offering a valuable resource for researchers, policymakers, and practitioners engaged in environmental management and public health.
  4. Cui T, Lu R, Liu C, Wu Z, Jiang X, Liu Y, et al.
    Sci Total Environ, 2024 May 20;926:171829.
    PMID: 38537812 DOI: 10.1016/j.scitotenv.2024.171829
    In recent years, the use of electronic vaping products (also named e-cigarettes) has increased due to their appealing flavors and nicotine delivery without the combustion of tobacco. Although the hazardous substances emitted by e-cigarettes are largely found to be much lower than combustible cigarettes, second-hand exposure to e-cigarette aerosols is not completely benign for bystanders. This work reviewed and synthesized findings on the second-hand exposure of aerosols from e-cigarettes and compared the results with those of the combustible cigarettes. In this review, different results were integrated based upon sampling locations such as residences, vehicles, offices, public places, and experimental exposure chambers. In addition, the factors that influence the second-hand exposure levels were identified by objectively reviewing and integrating the impacts of combustible cigarettes and e-cigarettes on the environment. It is a challenge to compare the literature data directly to assess the effect of smoking/vaping on the indoor environment. The room volume, indoor air exchange rate, puffing duration, and puffing numbers should be considered, which are important factors in determining the degree of pollution. Therefore, it is necessary to calculate the "emission rate" to normalize the concentration of pollutants emitted under various experimental conditions and make the results comparable. This review aims to increase the awareness regarding the harmful effects of the second-hand exposure to aerosols coming from the use of cigarettes and e-cigarettes, identify knowledge gaps, and provide a scientific basis for future policy interventions with regard to the regulation of smoking and vaping.
  5. Song J, Farhadi A, Tan K, Lim L, Tan K
    Sci Total Environ, 2024 May 20;926:172056.
    PMID: 38552980 DOI: 10.1016/j.scitotenv.2024.172056
    Dissolved oxygen (DO) is an important parameter that affects the biology, physiology, and immunology of aquatic animals. In recent decades, DO levels in the global oceans have sharply decreased, partly due to an increase in atmospheric carbon dioxide, temperature, and anthropogenic nutrient loads. Although there have been many reports on the effects of hypoxia on the survival, growth, behavior, and immunity of bivalves, this information has not been well organized. Therefore, this article provides a comprehensive review of the effects of hypoxia on bivalves. In general, hypoxia negatively impacts the food consumption rate and assimilation efficiency, as well as increasing respiration rates in many bivalves. As a result, it reduces the energy allocation for bivalve growth, shell formation, and reproduction. In severe cases, prolonged exposure to hypoxia can result in mass mortality in bivalves. Moreover, hypoxia also has adverse effects on the immunity and response of bivalves to predators, including decreased burial depths, sensitivity to predators, impairment of byssus production, and negatively impacts on the integrity, strength, and composition of bivalve shells. The tolerance of bivalves to hypoxia largely depends on size and species, with larger bivalves being more susceptible to hypoxia and intertidal species being relatively more tolerant to hypoxia. The information in this article is very useful for elucidating the current research status of hypoxia on bivalves and determining future research directions.
  6. Qutob M, Rafatullah M, Muhammad SA, Siddiqui MR, Alam M
    Sci Total Environ, 2024 May 20;926:171843.
    PMID: 38521259 DOI: 10.1016/j.scitotenv.2024.171843
    The catalysts derived from natural iron minerals in the advanced oxidation process offer several advantages. However, their utilization in soil remediation is restricted due to the presence of soil impurities, which can inhibit the catalytic activity of these minerals. The soils in tropical regions exhibit lower organic matter content, limited cation exchange capacity, and are non-saline, this enhances the efficiency of utilizing natural iron minerals from tropical soil as a catalyst. In this regard, the catalytic potential of naturally iron-bearing tropical soil was investigated to eliminate phenanthrene (PHE), pyrene (PYR), and benzo[α]pyrene (B[α]P) using an oxygenated reactor supported with persulfate (PS). The system showed an efficient performance, and the removal efficiencies under the optimum conditions were 81 %, 73 %, and 86 % for PHE, PYR, and B[α]P, respectively. This indicated that the catalytic activity of iron was working efficiently. However, there were changes in the soil characteristics after the remediation process such as a significant reduction in iron and aluminum contents. The scavenging experiments demonstrated that HO• had a minor role in the oxidation process, SO4•- and O2•- emerged as the primary reactive species responsible for the effective degradation of the PAHs. Moreover, the by-products were monitored after soil remediation to evaluate their toxicity and to propose degradation pathways. The Mutagenicity test showed that two by-products from each PHE and B[α]P had positive results, while only one by-product of PYR showed positive. The toxicity tests of oral rat LD50 and developmental toxicity tests revealed that certain PAHs by-products could be more toxic from the parent pollutant itself. This study represents a notable progression in soil remediation by providing a step forward in the application of the advanced oxidation process (AOP) without requiring additional catalysts to activate oxidants and degrade pollutant PAHs from the soil.
  7. Jun C, Narimani R, Yeh PJ, Kim SY, Wu C
    Sci Total Environ, 2024 May 15;925:171839.
    PMID: 38513843 DOI: 10.1016/j.scitotenv.2024.171839
    Water availability needs to be accurately assessed to understand and effectively manage hydrologic environments. However, the estimation of evapotranspiration (ET) is prone to errors due to the complex interactions that occur between the atmosphere, the Earth's surface, and vegetation cover. This paper proposes a novel approach for analyzing the sources of inaccuracy in estimating the annual ET using the Budyko framework (BF), particularly temporal variability in precipitation (P), potential evapotranspiration (EP), runoff (R), and the change in soil storage (ΔS). Error decomposition is employed to determine the individual contributions of P, R, EP, and ΔS to the ET error variance at 12 locations in the state of Illinois using a dataset covering a 22-year period. To the best of our knowledge, this study represents the first BF-based investigation that considers R in the error decomposition of the predicted ET variance. The ET error variance increases with the variance in the P and R in Illinois and decreases with the covariance between these two variables. In addition, when accounting for ΔS in the BF, the scenario in which ΔS affects the total available water (i.e., P) is reliable, with a low prediction error and a 13.87 % lower root mean square error compared with the scenario in which the effect of ΔS is negligible. We thus recommend the inclusion of ΔS and R as key variables in the BF to improve water budget estimations.
  8. Aralappanavar VK, Mukhopadhyay R, Yu Y, Liu J, Bhatnagar A, Praveena SM, et al.
    Sci Total Environ, 2024 May 10;924:171435.
    PMID: 38438042 DOI: 10.1016/j.scitotenv.2024.171435
    The harmful effects of microplastics (MPs) pollution in the soil ecosystem have drawn global attention in recent years. This paper critically reviews the effects of MPs on soil microbial diversity and functions in relation to nutrients and carbon cycling. Reports suggested that both plastisphere (MP-microbe consortium) and MP-contaminated soils had distinct and lower microbial diversity than that of non-contaminated soils. Alteration in soil physicochemical properties and microbial interactions within the plastisphere facilitated the enrichment of plastic-degrading microorganisms, including those involved in carbon (C) and nutrient cycling. MPs conferred a significant increase in the relative abundance of soil nitrogen (N)-fixing and phosphorus (P)-solubilizing bacteria, while decreased the abundance of soil nitrifiers and ammonia oxidisers. Depending on soil types, MPs increased bioavailable N and P contents and nitrous oxide emission in some instances. Furthermore, MPs regulated soil microbial functional activities owing to the combined toxicity of organic and inorganic contaminants derived from MPs and contaminants frequently encountered in the soil environment. However, a thorough understanding of the interactions among soil microorganisms, MPs and other contaminants still needs to develop. Since currently available reports are mostly based on short-term laboratory experiments, field investigations are needed to assess the long-term impact of MPs (at environmentally relevant concentration) on soil microorganisms and their functions under different soil types and agro-climatic conditions.
  9. Zhu C, Lv W, Hong S, Han M, Song W, Liu C, et al.
    Sci Total Environ, 2024 May 03.
    PMID: 38705306 DOI: 10.1016/j.scitotenv.2024.172962
    Perfluorooctane sulfonate (PFOS) is a typical persistent organic pollutant that is characterized by environmental persistence, bioaccumulation, and toxicity. In this study, we investigated the gut microbial response of the red claw crayfish Cherax quadricarinatus after 28 days of exposure to 0 ng/L, 1 ng/L, 10 μg/L, or 10 mg/L of PFOS as a stressor. We measured oxidative stress-related enzyme activities and expression of molecules related to detoxification mechanisms to evaluate the toxic effects of PFOS. We found that PFOS disturbed microbial homeostasis in the gut of C. quadricarinatus, resulting in increased abundance of the pathogen Shewanella and decreased abundance of the beneficial bacterium Lactobacillus. The latter especially disturbed amino acid transport and carbohydrate transport. We also found that the activities of glutathione S-transferase and glutathione peroxidase were positively correlated with the expression levels of cytochrome P450 genes (GST1-1, GSTP, GSTK1, HPGDS, UGT5), which are products of PFOS-induced oxidative stress and play an antioxidant role in the body. The results of this study provided valuable ecotoxicological data to better understand the biological fate and effects of PFOS in C. quadricarinatus.
  10. Kang Z, Duan L, Zahmatkesh S
    Sci Total Environ, 2024 May 02.
    PMID: 38703847 DOI: 10.1016/j.scitotenv.2024.172931
    Chemical and pharmaceutical chemicals found in water sources create substantial risks to human health and the environment. The presence of pharmaceutical contaminants in water can cause antibiotic resistance development, toxicity to aquatic organisms, and endocrine disruption. Hence, the elimination of chemicals and other contaminants from wastewater prior to its release is a burgeoning concern in the domains of engineering and science. The use of treatment technologies in wastewater treatment plants can remove pharmaceutical contaminants through the oxidation process. However, many traditional wastewater treatment plants lack the advanced monitoring tools required to detect low concentrations of pharmaceuticals. Without the ability to detect these compounds, it's challenging to treat them effectively. The goal of this study was to use Response Surface Methodology (RSM) and Artificial Neural Networks (ANN) algorithms to model and improve how Nevirapine and Efavirenz break down in different chlorination conditions. The RSM analysis revealed statistically significant models (F-values: Nevirapine, pH-t: 108.15, T-t: 76.55, ICC-t: 110.84), indicating a strong correlation between operational parameters (pH, temperature, and initial chlorine concentration) and degradation behavior. The ANN model accurately predicted the degradation of both Nevirapine and Efavirenz under various chlorination conditions, as confirmed by analyzing actual-predicted graphs, residual plots, and Mean Squared Error (MSE) values. The ANN model using ICC-t achieved the highest MOD value of 31.31 % for Nevirapine. The ANN model based on ICC-t yielded a maximum MOD value of 16.06 % for Efavirenz. These findings provide valuable insights into optimizing chlorination processes for better removal of these pharmaceutical contaminants from water.
  11. Womersley FC, Rohner CA, Abrantes K, Afonso P, Arunrugstichai S, Bach SS, et al.
    Sci Total Environ, 2024 Apr 30.
    PMID: 38697520 DOI: 10.1016/j.scitotenv.2024.172776
    The expansion of the world's merchant fleet poses a great threat to the ocean's biodiversity. Collisions between ships and marine megafauna can have population-level consequences for vulnerable species. The Endangered whale shark (Rhincodon typus), shares a circumglobal distribution with this expanding fleet and tracking of movement pathways has shown that large vessel collisions pose a major threat to the species. However, it is not yet known whether they are also at risk within aggregation sites, where up to 400 individuals can gather to feed on seasonal bursts of planktonic productivity. These "constellation" sites are of significant ecological, socio-economic and cultural value. Here, through expert elicitation, we gathered information from most known constellation sites for this species across the world (>50 constellations and >13,000 individual whale sharks). We defined the spatial boundaries of these sites and their overlap with shipping traffic. Sites were then ranked based on relative levels of potential collision danger posed to whale sharks in the area. Our results showed that researchers and resource managers may underestimate the threat posed by large ship collisions due to a lack of direct evidence, such as injuries or witness accounts, which are available for other, sub-lethal threat categories. We found that constellations in the Arabian Sea and adjacent waters, the Gulf of Mexico, the Gulf of California, and Southeast and East Asia, had the greatest level of vessel collision threat. We also identified 39 sites where peaks in shipping activity coincided with peak seasonal occurrences of whale sharks, sometimes across several months. Simulated potential collision mitigation options estimated a minimal impact to industry, as most whale shark core habitat areas were relatively small. Given the threat posed by vessel collisions, a coordinated, multi-national approach to collision mitigation is needed within priority whale shark habitats to ensure collision protection for the species.
  12. Zhao J, Yu L, Newbold T, Shen X, Liu X, Hua F, et al.
    Sci Total Environ, 2024 Apr 20;922:171296.
    PMID: 38423324 DOI: 10.1016/j.scitotenv.2024.171296
    Largely driven by agricultural pressures, biodiversity has experienced great changes globally. Exploring biodiversity responses to agricultural practices associated with agricultural intensification can benefit biodiversity conservation in agricultural landscapes. However, the effects of agricultural practices may also extend to natural habitats. Moreover, agricultural impacts may also vary with geographical region. We analyze biodiversity responses to landscape cropland coverage, cropping frequency, fertiliser and yield, among different land-use types and across geographical regions. We find that species richness and total abundance generally respond negatively to increased landscape cropland coverage. Biodiversity reductions in human land-use types (pasture, plantation forest and cropland) were stronger in tropical than non-tropical regions, which was also true for biodiversity reductions with increasing yield in both human and natural land-use types. Our results underline substantial biodiversity responses to agricultural practices not only in cropland but also in natural habitats, highlighting the fact that biodiversity conservation demands a greater focus on optimizing agricultural management at the landscape scale.
  13. Zou JJ, Dai C, Hu J, Tong WK, Gao MT, Zhang Y, et al.
    Sci Total Environ, 2024 Apr 20;922:171201.
    PMID: 38417506 DOI: 10.1016/j.scitotenv.2024.171201
    Mycelial pellets formed by Penicillium thomii ZJJ were applied as efficient biosorbents for the removal of polycyclic aromatic hydrocarbons (PAHs), which are a type of ubiquitous harmful hydrophobic pollutants. The live mycelial pellets were able to remove 93.48 % of pyrene at a concentration of 100 mg/L within 48 h, demonstrating a maximum adsorption capacity of 285.63 mg/g. Meanwhile, the heat-killed one also achieved a removal rate of 65.01 %. Among the six typical PAHs (pyrene, phenanthrene, fluorene, anthracene, fluoranthene, benzo[a]pyrene), the mycelial pellets preferentially adsorbed the high molecular weight PAHs, which also have higher toxicity, resulting in higher removal efficiency. The experimental results showed that the biosorption of mycelial pellets was mainly a spontaneous physical adsorption process that occurred as a monolayer on a homogeneous surface, with mass transfer being the key rate-limiting step. The main adsorption sites on the surface of mycelia were carboxyl and N-containing groups. Extracellular polymeric substances (EPS) produced by mycelial pellets could enhance adsorption, and its coupling with dead mycelia could achieve basically the same removal effect to that of living one. It can be concluded that biosorption by mycelial pellets occurred due to the influence of electrostatic and hydrophobic interactions, consisting of five steps. Furthermore, the potential applicability of mycelial pellets has been investigated considering diverse factors. The mycelia showed high environmental tolerance, which could effectively remove pyrene across a wide range of pH and salt concentration. And pellets diameters and humic acid concentration had a significant effect on microbial adsorption effect. Based on a cost-effectiveness analysis, mycelium pellets were found to be a low-cost adsorbent. The research outcomes facilitate a thorough comprehension of the adsorption process of pyrene by mycelial pellets and their relevant applications, proposing a cost-effective method without potential environmental issues (heat-killed mycelial pellets plus EPS) to removal PAHs.
  14. Dike EC, Amaechi CV, Beddu SB, Weje II, Ameme BG, Efeovbokhan O, et al.
    Sci Total Environ, 2024 Apr 01;919:170830.
    PMID: 38340829 DOI: 10.1016/j.scitotenv.2024.170830
    It is imperative to assess coastal vulnerability to safeguard coastal areas against extreme events and sea-level rise. In the Niger Delta region, coastal vulnerability index assessment in the past focused on open-access parameters without comparing the open-access parameters, especially coastal elevation and shoreline change. This sensitivity to the shoreline method and open-access coastal elevation limits the information for the planning of coastal adaptation. The area under investigation is the Niger Delta, which is distinguished by its low-lying coastal plains and substantial ecological and economic significance. In light of the selected parameters, Sentinel-1 GRD images from 2015 to 2022 during high tidal conditions were used to delineate the shoreline position and change rate. Also, different open-access DEMs were used to derive the coastal elevation using the Geographic Information System (GIS) approach. The study employs 5 parameters, such as shorelines obtained from Sentinel-1 SAR images and several Digital Elevation Models (DEMs), geomorphology, mean sea level rise, significant wave height, and mean tide range, in conjunction with the initial Coastal Vulnerability Index (CVI) approach. The study reveals that the type of DEM used significantly influences the coastal elevation ranking and, subsequently, the CVI. Differences in shoreline change rate estimation methods (EPR and LRR) also impact the vulnerability rankings but to a lesser extent. The findings highlight that 40.1% to 58.9% of the Niger Delta coastline is highly or very highly vulnerable to sea-level rise, depending on the shoreline change rate or DEM used. The study underscores the potential of using CVI methods with open-access data in data-poor countries for identifying vulnerable coastal areas that may need protection or adaptation. Lastly, it points out the need for higher resolution DEMs.
  15. Saharudin DM, Jeswani HK, Azapagic A
    Sci Total Environ, 2024 Apr 01;919:170266.
    PMID: 38253094 DOI: 10.1016/j.scitotenv.2024.170266
    Biochar used for soil amendment is considered a viable negative emissions technology as it can be produced easily from a wide range of biomass feedstocks, while offering numerous potential agricultural benefits. This research is the first to present a comprehensive sustainability assessment of large-scale biochar production and application in Malaysia. The five feedstocks considered comprise the country's most abundant agricultural wastes from palm oil (empty fruit bunches, fibres, palm fronds and shells) and rice (straw) plantations. Combined with process simulation, life cycle assessment and life cycle costing are used to assess the sustainability of biochar production via slow pyrolysis at different temperatures (300-600 °C), considering two functional units: i) production and application of 1 t of biochar; and ii) removal of 1 t of CO2from the atmosphere. The cradle-to-grave system boundary comprises all life cycle stages from biomass acquisition to biochar use for soil amendment. The positive impacts of the latter, such as carbon sequestration, fertiliser avoidance and reduction in soil N2O emissions, are also included. The global warming potential (GWP) is net-negative in all scenarios, ranging from -436 to -2,085 kg CO2 eq./t biochar and -660 to -933 kg CO2 eq./t CO2 removed. Per t of biochar, the systems with shells have the lowest GWP and those with straw the highest, all showing better performance if produced at higher pyrolysis temperatures. However, the temperature trend is opposite for all other 17 impacts considered, with fibres being the best option and fronds the worst for most categories. Per t CO2 removed, fronds have the highest impact in eight categories, including GWP, and shells the lowest in most categories. All impacts are lower for biochar production at higher temperatures. The main hotspot is the pyrolysis process, influencing the majority of impact categories and contributing 66-75 % to the life cycle costs. The costs range from US$116-197/t biochar and US$60-204/t CO2 removed. The least expensive systems per t biochar are those with straws and per t CO2 removed those with shells, while fronds are the worst option economically for both functional units. Utilising all available feedstocks could remove 6-12.4 Mt of CO2 annually, reducing the national emissions from the agricultural sector by up to 54 % and saving US$36.05 M annually on fertilisers imports. These results will be of interest to policy makers in Malaysia and other regions with abundant agricultural wastes.
  16. Li Y, Ye Y, Yuan H, Rihan N, Han M, Liu X, et al.
    Sci Total Environ, 2024 Apr 01;919:170924.
    PMID: 38360329 DOI: 10.1016/j.scitotenv.2024.170924
    Nanoplastics (NPs) are widely distributed environmental pollutants that can disrupt intestinal immunity of crustaceans. In this study, the effects of NPs on gut immune enzyme activities, cell morphology, apoptosis, and microbiota diversity of Litopenaeus vannamei were investigated. L. vannamei was exposed to five concentrations of NPs (0, 0.1, 1, 5, and 10 mg/L) for 28 days. The results showed that higher concentrations of NPs damaged the intestinal villi, promoted formation of autophagosomes, increased intestinal non-specific immunoenzyme activities, and significantly increased apoptosis at 10 mg/L. In response to exposure to NPs, the expression levels of ATG3, ATG4, ATG12, Caspase-3, p53, and TNF initially increased and then decreased. In addition, the concentration of NPs was negatively correlated to the expression levels of the genes of interest and intestinal enzyme activities, suggesting that exposure to NPs inhibited apoptosis and immune function. The five dominant phyla of the gut microbiota (Proteobacteria, Firmicutes, Bacteroidetes, Acidobacteria, and Actinomycetes) were similar among groups exposed to different concentrations of NPs, but the abundances tended to differ. Notably, exposure to NPs increased the abundance of pathogenic bacteria. These results confirm that exposure to NPs negatively impacted intestinal immune function of L. vannamei. These findings provide useful references for efficient breeding of L. vannamei.
  17. Tisserand R, van der Ent A, Nkrumah PN, Didier S, Sumail S, Morel JL, et al.
    Sci Total Environ, 2024 Apr 01;919:170691.
    PMID: 38325468 DOI: 10.1016/j.scitotenv.2024.170691
    Nickel hyperaccumulator plants play a major role in nickel recycling in ultramafic ecosystems, and under agromining the nickel dynamics in the farming system will be affected by removal of nickel-rich biomass. We investigated the biogeochemical cycling of nickel as well as key nutrients in an agromining operation that uses the metal crop Phyllanthus rufuschaneyi in the first tropical metal farm located in Borneo (Sabah, Malaysia). For two years, this study monitored nine 25-m2 plots and collected information on weather, biomass exportation, water, and litter fluxes to the soil. Without harvesting, nickel inputs and outputs had only minor contributions (<1 %) to the total nickel budget in this system. The nickel cycle was mainly driven by internal fluxes, particularly plant uptake, litterfall and throughfall. After two years of cropping, the nickel litter flux corresponded to 50 % of the total nickel stock in the aerial biomass (3.1 g m-2 year-1). Nickel was slowly released from the litter; after 15 months of degradation, 60 % of the initial biomass and the initial nickel quantities were still present in the organic layer. Calcium, phosphorus and potassium budgets in the system were negative without fertilisation. Unlike what is observed for nickel, sustained agromining would thus lead to a strong depletion of calcium stocks if mineral weathering cannot replenish it.
  18. Junaid M, Sultan M, Liu S, Hamid N, Yue Q, Pei DS, et al.
    Sci Total Environ, 2024 Mar 20;917:170535.
    PMID: 38307287 DOI: 10.1016/j.scitotenv.2024.170535
    Owing to a wide range of advantages, such as stability, non-invasiveness, and ease of sampling, hair has been used progressively for comprehensive biomonitoring of organic pollutants for the last three decades. This has led to the development of new analytical and multi-class analysis methods for the assessment of a broad range of organic pollutants in various population groups, ranging from small-scale studies to advanced studies with a large number of participants based on different exposure settings. This meta-analysis summarizes the existing literature on the assessment of organic pollutants in hair in terms of residue levels, the correlation of hair residue levels with those of other biological matrices and socio-demographic factors, the reliability of hair versus other biomatrices for exposure assessment, the use of segmental hair analysis for chronic exposure evaluation and the effect of external contamination on hair residue levels. Significantly high concentrations of organic pollutants such as pesticides, flame retardants, polychlorinated biphenyls and polycyclic aromatic hydrocarbon were reported in human hair samples from different regions and under different exposure settings. Similarly, high concentrations of pesticides (from agricultural activities), flame retardants (E-waste dismantling activities), dioxins and furans were observed in various occupational settings. Moreover, significant correlations (p 
  19. Ng CY, Wan Jaafar WZ, Othman F, Lai SH, Mei Y, Juneng L
    Sci Total Environ, 2024 Mar 20;917:170249.
    PMID: 38278251 DOI: 10.1016/j.scitotenv.2024.170249
    An effective drought monitoring tool is essential for the development of timely drought early warning system. This study evaluates Evaporative Demand Drought Index (EDDI) as a drought indicator in measuring spatiotemporal evolution of droughts over Peninsular Malaysia during 1989-2018. The modified Mann-Kendall and Sen's slope tests were performed to detect the presence of monotonic trends in EDDI, Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI) and their related climate variables. The performance of EDDI in capturing the drought onset, evolutions and demise of historical severe droughts was also compared with SPI and SPEI at multiple timescales. EDDI demonstrates strong spatiotemporal correlations with SPI and SPEI and comparable performance in historical drought events identification. At sub-monthly timescale, 2-week EDDI displays equivalent drought severities and durations for all historical severe droughts corresponding to the monthly EDDI. In the case when rainfall deficits are normalized in an otherwise warm and dry month, EDDI may serve as a great alternative to SPI and SPEI due to it being sensitive to the changes in prevalent atmospheric conditions. Collectively, the results fill in the knowledge gaps on drought evolutions from the evaporative perspective and highlight the efficacy of EDDI as a valuable drought early warning tool for Peninsular Malaysia. Future study should explore the physical mechanisms behind the development of flash drought and the role of evaporation in the drought propagation processes.
  20. Tan K, Xu P, Huang L, Luo C, Huang J, Fazhan H, et al.
    Sci Total Environ, 2024 Mar 01;914:169892.
    PMID: 38211869 DOI: 10.1016/j.scitotenv.2024.169892
    Global human population has increased dramatically over the past 50 years. As a result, marine fisheries and finfish aquaculture have become increasingly unsustainable, driving bivalve aquaculture to become an important food industry for the production of marine animal protein to support the growing market demand for animal protein. It is projected that the rate of bivalve aquaculture expansion will be greatly accelerated in the near future as the human population continues to increase. Although it is generally believed that unfed bivalve aquaculture has less impact on the environment than finfish aquaculture, the rapid expansion of bivalve aquaculture has raised concerns about its potential negative impact, especially on plankton and benthic community. Therefore, there is an urgent need to update the potential effects of bivalve aquaculture on plankton and benthic community. This article reviews the present state of knowledge on environmental issues related to bivalve aquaculture, and discusses potential mitigation measures for the environmental impacts induced by expansion of bivalve aquaculture. This review provides guidance for scientists and farm managers to clarify the current state of research and identify priority research needs for future bivalve aquaculture research. Therefore, specific management strategies can be formulated for the sustainable development and expansion of bivalve aquaculture.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links