The productivity of smallholder sheep and goat flocks is constrained by high morbidity and mortality of young stock due to helminthosis and coccidiosis. We hypothesized that gastrointestinal parasites are prevalent and may cause severe infections amongst small ruminants in Malaysia. A cross-sectional survey was conducted between March and December 2019 to investigate the prevalence, risk factors, and levels of infection with gastrointestinal strongyle and coccidia in selected smallholder goat flocks in Negeri Sembilan, Malaysia. A total of 257 blood and fecal samples and management data were collected from four farms in Negeri Sembilan. Gastrointestinal parasites were detected by routine sodium chloride floatation, and the McMaster technique was used to quantify the fecal eggs/oocysts per gram outputs (EPG/OPG). The severity of infection was classified as mild (50-799), moderate (800-1200), or severe (>1200). The packed cell volume (PCV) was determined by microhematocrit centrifugation and classified as anemic or non-anemic. Coprological examination revealed an overall prevalence of 78.6% (CI = 72.74-83.44) and 100% flock level prevalence of strongyle and coccidia infection among goats from Negeri Sembilan with a higher infection in flock A-Lenggeng (95.6%) than B-Senawang (87.3%), D-Mendom (80.6%), or C-Seremban (60.0%). The co-infections of strongyle + Eimeria (50.6; CI = 44.50 to 56.64) were more common than single infections of either strongyle (16.7%; CI = 12.66 to 21.78) or Eimeria (4.3%; CI = 2.41 to 7.50). Quantitative analysis has revealed different (p < 0.05) patterns of EPG/OPG in various categories of goats. In total, there were 49.8% mild, 8.6% moderate, and 13.6% severe infections of strongyle and 40.1% mild, 6.6% moderate, and 19.8% severe infections of coccidia among goats. The mean PCV of goats with severe strongyle infection (24.60 ± 0.85) was significantly (p < 0.05) lower than the moderate (26.90 ± 1.15), or mild (28.23 ± 0.50) infections and the uninfected (30.4 ± 0.71). There were increased odds of infection with strongyle and coccidia among female (OR = 3.2) and adult (OR = 11.0) goats from smallholder flocks in Negeri Sembilan. In conclusion, gastrointestinal strongyles and coccidia occur at high frequency among smallholder goats, and there is a higher risk of infection amongst the adult and female stock.
This study was designed to examine the use of RAPD markers in discriminating triploid and diploid African catfish Clarias gariepinus (Burchell, 1822). Following a routine technique, triploidy was induced by cold shock and confirm by erythrocyte measurement in C. gariepinus. Thereafter, 80 RAPD markers were screened; out of which, three showed the highest percentage of polymorphism (i.e., OPB 16 = 71.43%; OPC 14 = 61.9%; OPD 12 = 75%). The results obtained showed genotype differences between triploid and diploid without overlapping. However, the development of a Sequence Characterized Amplified Region (SCAR) marker was not achievable because progenies of triploid and diploid C. gariepinus could not be differentiated based on a specific fragment. Consequently, the genetic distance showed high similarities for both treatments and the UPGMA-generated dendrogram could not separate the treatments into two distinct clusters. It was concluded that RAPD makers cannot be used to separate the ploidy status of fishes.
Metabolic dysfunction-associated fatty liver disease (MAFLD) is an excessive buildup of liver lipids closely associated with various kinds of undesirable metabolic effects and oxidative stress. We aimed to investigate the protective and therapeutic effects of orlistat on metabolic syndrome and oxidative stress parameters in high-fat diet (HFD) induced-MAFLD rats. Twenty-four male Sprague-Dawley rats were randomly divided into four groups (n = 6/group), i.e., Normal control (N), HFD, HFD + orlistat (HFD + O) (10 mg/kg/day administered concomitantly for 12 weeks as a protective model), and obese+orlistat (OB + O) (10 mg/kg/day administered 6 weeks after induction of obesity as a therapeutic model) groups. After 12 weeks, the HFD group had significantly increased Lee obesity index, serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, total cholesterol, triglyceride, low-density lipoprotein levels, liver total cholesterol and triglyceride levels, insulin resistance and non-alcoholic steatohepatitis (NASH) together with decreased serum high-density lipoprotein level. Additionally, the HFD group also showed increased Nrf2 translocation to the nucleus with high Keap1 expression and increased liver oxidative stress parameters. Orlistat significantly improved all these alterations in HFD rats. We demonstrated that orlistat might have protective and therapeutic effects against HFD-induced MAFLD rats by its activation on Nrf2 signaling pathway, which subsequently improved metabolic syndrome and oxidative stress parameters.
Toxoplasma gondii is an important zoonotic foodborne parasite capable of infecting almost all warm-blooded animal species worldwide. Toxoplasmosis is usually acquired via ingestion of undercooked infected animal tissues resulting in life-threatening consequences for unborn foetus and immunocompromised individuals. A cross-sectional study was carried out to determine the prevalence of T. gondii infection, its associated risk factors in farms, and haplotypes isolated from the native village chicken and pig populations in Peninsular Malaysia. The seroprevalence of T. gondii in village chickens at the animal level was low at 7.6% (95% CI: 4.60-11.60), while at the farm level, it was 52.0% (95% CI: 31.30-72.20). For pigs, the animal-level seroprevalence of T. gondii was 3.0% (95% CI: 1.60-5.10), while the farm-level, it was 31.6% (95% CI: 12.60-56.60). The PCR-based DNA detection on meat samples from chickens (n = 250) and pork (n = 121) detected 14.0% (95% CI: 9.95-18.9) and 5.8% (95% CI: 2.4-11.6) positive, respectively. Six unique T. gondii haplotypes were isolated from the tissue samples. Multivariable logistic regression analysis showed that feeding the chickens farm-produced feeds and allowing wild animals access to pig farms were significant determinants for farm-level seropositivity. Providing hygienic and good quality feeds to chickens and increasing biosecurity in pig farms through prevention of access by wildlife may reduce the risk of transmission of T. gondii infection in the local chickens and pig farms.
Infectious bronchitis virus (IBV) poses significant financial and biosecurity challenges to the commercial poultry farming industry. IBV is the causative agent of multi-systemic infection in the respiratory, reproductive and renal systems, which is similar to the symptoms of various viral and bacterial diseases reported in chickens. The avian immune system manifests the ability to respond to subsequent exposure with an antigen by stimulating mucosal, humoral and cell-mediated immunity. However, the immune response against IBV presents a dilemma due to the similarities between the different serotypes that infect poultry. Currently, the live attenuated and killed vaccines are applied for the control of IBV infection; however, the continual emergence of IB variants with rapidly evolving genetic variants increases the risk of outbreaks in intensive poultry farms. This review aims to focus on IBV challenge-infection, route and delivery of vaccines and vaccine-induced immune responses to IBV. Various commercial vaccines currently have been developed against IBV protection for accurate evaluation depending on the local situation. This review also highlights and updates the limitations in controlling IBV infection in poultry with issues pertaining to antiviral therapy and good biosecurity practices, which may aid in establishing good biorisk management protocols for its control and which will, in turn, result in a reduction in economic losses attributed to IBV infection.
Infectious bronchitis virus (IBV) is a major economic problem in commercial chicken farms with acute multiple-system infection, especially in respiratory and urogenital systems. A live-attenuated and killed vaccine is currently immunized to control IBV infection; however, repeated outbreaks occur in both unvaccinated and vaccinated birds due to the choice of inadequate vaccine candidates and continuous emergence of novel infectious bronchitis (IB) variants and failure of vaccination. However, similar clinical signs were shown in different respiratory diseases that are essential to improving the diagnostic assay to detect IBV infections. Various risk factors involved in the failure of IB vaccination, such as various routes of application of vaccination, the interval between vaccinations, and challenge with various possible immunosuppression of birds are reviewed. The review article also highlights and updates factors affecting the diagnosis of IBV disease in the poultry industry with differential diagnosis to find the nature of infections compared with non-IBV diseases. Therefore, it is essential to monitor the common reasons for failed IBV vaccinations with preventive action, and proper diagnostic facilities for identifying the infective stage, leading to earlier control and reduced economic losses from IBV disease.