Displaying all 4 publications

Abstract:
Sort:
  1. Shi C, Zhao L, Atoni E, Zeng W, Hu X, Matthijnssens J, et al.
    mSystems, 2020 Sep 29;5(5).
    PMID: 32994288 DOI: 10.1128/mSystems.00640-20
    Aedes mosquitoes can efficiently transmit many pathogenic arboviruses, placing a great burden on public health worldwide. In addition, they also carry a number of insect-specific viruses (ISVs), and it was recently suggested that some of these ISVs might form a stable species-specific "core virome" in mosquito populations. However, little is known about such a core virome in laboratory colonies and if it is present across different developmental stages. In this study, we compared the viromes in eggs, larvae, pupae, and adults of Aedes albopictus mosquitoes collected from a lab colony and compared each to the virome of different developmental stages collected in the field. The virome in lab-derived A. albopictus was very stable across all stages, consistent with a vertical transmission route of these viruses, and formed a possible "vertically transmitted core virome." The different stages of field-collected A. albopictus mosquitoes also contained this stable vertically transmitted core virome, as well as another set of viruses (e.g., viruses distantly related to Guadeloupe mosquito virus, Hubei virga-like virus 2, and Sarawak virus) shared by mosquitoes across different stages, which might represent an "environment-derived core virome." To further study this core set of ISVs, we screened 48 publicly available SRA viral metagenomic data sets of mosquitoes belonging to the genus Aedes, showing that some of the identified ISVs were identified in the majority of SRAs and providing further evidence supporting the core-virome concept.IMPORTANCE Our study revealed that the virome was very stable across all developmental stages of both lab-derived and field-collected Aedes albopictus The data representing the core virome in lab A. albopictus proved the vertical transmission route of these viruses, forming a "vertically transmitted core virome." Field mosquitoes also contained this stable vertically transmitted core virome as well as additional viruses, which probably represented "environment-derived core virome" and which therefore were less stable over time and geography. By further screening publicly available SRA viral metagenomic data sets from mosquitoes belonging to the genus Aedes, some of the identified core ISVs were shown to be present in the majority of SRAs, such as Phasi Charoen-like phasivirus and Guadeloupe mosquito virus. How these core ISVs influence the biology of the mosquito host and arbovirus infection and evolution deserves to be further explored.
  2. Han M, Sun J, Yang Q, Liang Y, Jiang Y, Gao C, et al.
    mSystems, 2023 Feb 23.
    PMID: 36815859 DOI: 10.1128/msystems.01211-22
    The world's largest macroalgal green tide, caused by Ulva prolifera, has resulted in serious consequences for coastal waters of the Yellow Sea, China. Although viruses are considered to be one of the key factors in controlling microalgal bloom demise, understanding of the relationship between viral communities and the macroalgal green tide is still poor. Here, a Qingdao coastal virome (QDCV) time-series data set was constructed based on the metagenomic analysis of 17 DNA viromes along three coastal stations of the Yellow Sea, covering different stages of the green tide from Julian days 165 to 271. A total of 40,076 viral contigs were detected and clustered into 28,058 viral operational taxonomic units (vOTUs). About 84% of the vOTUs could not be classified, and 62% separated from vOTUs in other ecosystems. Green tides significantly influenced the spatiotemporal dynamics of the viral community structure, diversity, and potential functions. For the classified vOTUs, the relative abundance of Pelagibacter phages declined with the arrival of the bloom and rebounded after the bloom, while Synechococcus and Roseobacter phages increased, although with a time lag from the peak of their hosts. More than 80% of the vOTUs reached peaks in abundance at different specific stages, and the viral peaks were correlated with specific hosts at different stages of the green tide. Most of the viral auxiliary metabolic genes (AMGs) were associated with carbon and sulfur metabolism and showed spatiotemporal dynamics relating to the degradation of the large amount of organic matter released by the green tide. IMPORTANCE To the best of our knowledge, this study is the first to investigate the responses of viruses to the world's largest macroalgal green tide. It revealed the spatiotemporal dynamics of the unique viral assemblages and auxiliary metabolic genes (AMGs) following the variation and degradation of Ulva prolifera. These findings demonstrate a tight coupling between viral assemblages, and prokaryotic and eukaryotic abundances were influenced by the green tide.
  3. Zheng K, Liang Y, Paez-Espino D, Zou X, Gao C, Shao H, et al.
    mSystems, 2023 Sep 13;8(5):e0019723.
    PMID: 37702511 DOI: 10.1128/msystems.00197-23
    The N4-like viruses, which were recently assigned to the novel viral family Schitoviridae in 2021, belong to a podoviral-like viral lineage and possess conserved genomic characteristics and a unique replication mechanism. Despite their significance, our understanding of N4-like viruses is primarily based on viral isolates. To address this knowledge gap, this study has established a comprehensive N4-like viral data sets comprising 342 high-quality N4-like viruses/proviruses (144 viral isolates, 158 uncultured viruses, and 40 integrated N4-like proviruses). These viruses were classified into 97 subfamilies (89 of which are newly identified), 148 genera (100 of which are newly identified), and 253 species (177 of which are newly identified). The study reveals that N4-like viruses inhibit the polar region, oligotrophic open oceans, and the human gut, where they infect various bacterial lineages, such as Alpha/Beta/Gamma/Epsilon-proteobacteria in the Proteobacteria phylum. Although N4-like viral endogenization appears to be prevalent in Proteobacteria, it has also been observed in Firmicutes. Additionally, the phylogenetic analysis has identified evolutionary divergence within the hallmark genes of N4-like viruses, indicating a complex origin of the different conserved parts of viral genomes. Moreover, 1,101 putative auxiliary metabolic genes (AMGs) were identified in the N4-like viral pan-proteome, which mainly participate in nucleotide and cofactor/vitamin metabolisms. Of these AMGs, 27 were found to be associated with virulence, suggesting their potential involvement in the spread of bacterial pathogenicity. IMPORTANCE The findings of this study are significant, as N4-like viruses represent a unique viral lineage with a distinct replication mechanism and a conserved core genome. This work has resulted in a comprehensive global map of the entire N4-like viral lineage, including information on their distribution in different biomes, evolutionary divergence, genomic diversity, and the potential for viral-mediated host metabolic reprogramming. As such, this work significantly contributes to our understanding of the ecological function and viral-host interactions of bacteriophages.
  4. Sweet M, Villela H, Keller-Costa T, Costa R, Romano S, Bourne DG, et al.
    mSystems, 2021 Jun 29;6(3):e0124920.
    PMID: 34156291 DOI: 10.1128/mSystems.01249-20
    Bacteria associated with coral hosts are diverse and abundant, with recent studies suggesting involvement of these symbionts in host resilience to anthropogenic stress. Despite their putative importance, the work dedicated to culturing coral-associated bacteria has received little attention. Combining published and unpublished data, here we report a comprehensive overview of the diversity and function of culturable bacteria isolated from corals originating from tropical, temperate, and cold-water habitats. A total of 3,055 isolates from 52 studies were considered by our metasurvey. Of these, 1,045 had full-length 16S rRNA gene sequences, spanning 138 formally described and 12 putatively novel bacterial genera across the Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria phyla. We performed comparative genomic analysis using the available genomes of 74 strains and identified potential signatures of beneficial bacterium-coral symbioses among the strains. Our analysis revealed >400 biosynthetic gene clusters that underlie the biosynthesis of antioxidant, antimicrobial, cytotoxic, and other secondary metabolites. Moreover, we uncovered genomic features-not previously described for coral-bacterium symbioses-potentially involved in host colonization and host-symbiont recognition, antiviral defense mechanisms, and/or integrated metabolic interactions, which we suggest as novel targets for the screening of coral probiotics. Our results highlight the importance of bacterial cultures to elucidate coral holobiont functioning and guide the selection of probiotic candidates to promote coral resilience and improve holistic and customized reef restoration and rehabilitation efforts. IMPORTANCE Our paper is the first study to synthesize currently available but decentralized data of cultured microbes associated with corals. We were able to collate 3,055 isolates across a number of published studies and unpublished collections from various laboratories and researchers around the world. This equated to 1,045 individual isolates which had full-length 16S rRNA gene sequences, after filtering of the original 3,055. We also explored which of these had genomes available. Originally, only 36 were available, and as part of this study, we added a further 38-equating to 74 in total. From this, we investigated potential genetic signatures that may facilitate a host-associated lifestyle. Further, such a resource is an important step in the selection of probiotic candidates, which are being investigated for promoting coral resilience and potentially applied as a novel strategy in reef restoration and rehabilitation efforts. In the spirit of open access, we have ensured this collection is available to the wider research community through the web site http://isolates.reefgenomics.org/ with the hope many scientists across the globe will ask for access to these cultures for future studies.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links