Affiliations 

  • 1 College of Marine Life Sciences, Key Lab of Polar Oceanography and Global Ocean Change, Institute of Evolution and Marine Biodiversity, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
  • 2 University Malaysia Terengganu-Ocean University of China Joint Centre for Marine Studies, Qingdao, China
  • 3 Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry Natural Resources, Qingdao, China
mSystems, 2023 Feb 23.
PMID: 36815859 DOI: 10.1128/msystems.01211-22

Abstract

The world's largest macroalgal green tide, caused by Ulva prolifera, has resulted in serious consequences for coastal waters of the Yellow Sea, China. Although viruses are considered to be one of the key factors in controlling microalgal bloom demise, understanding of the relationship between viral communities and the macroalgal green tide is still poor. Here, a Qingdao coastal virome (QDCV) time-series data set was constructed based on the metagenomic analysis of 17 DNA viromes along three coastal stations of the Yellow Sea, covering different stages of the green tide from Julian days 165 to 271. A total of 40,076 viral contigs were detected and clustered into 28,058 viral operational taxonomic units (vOTUs). About 84% of the vOTUs could not be classified, and 62% separated from vOTUs in other ecosystems. Green tides significantly influenced the spatiotemporal dynamics of the viral community structure, diversity, and potential functions. For the classified vOTUs, the relative abundance of Pelagibacter phages declined with the arrival of the bloom and rebounded after the bloom, while Synechococcus and Roseobacter phages increased, although with a time lag from the peak of their hosts. More than 80% of the vOTUs reached peaks in abundance at different specific stages, and the viral peaks were correlated with specific hosts at different stages of the green tide. Most of the viral auxiliary metabolic genes (AMGs) were associated with carbon and sulfur metabolism and showed spatiotemporal dynamics relating to the degradation of the large amount of organic matter released by the green tide. IMPORTANCE To the best of our knowledge, this study is the first to investigate the responses of viruses to the world's largest macroalgal green tide. It revealed the spatiotemporal dynamics of the unique viral assemblages and auxiliary metabolic genes (AMGs) following the variation and degradation of Ulva prolifera. These findings demonstrate a tight coupling between viral assemblages, and prokaryotic and eukaryotic abundances were influenced by the green tide.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.