Displaying publications 1 - 20 of 294 in total

  1. Wang X, Yu L, Wang Z
    J Environ Public Health, 2022;2022:9602876.
    PMID: 36200091 DOI: 10.1155/2022/9602876
    Blended learning has become the dominant teaching approach in colleges and universities as they evolve. A good learning environment design can represent college and university teaching quality, improve undergraduates' literacy, and boost talent training. This paper introduces the data mining method of undergraduate comprehensive literacy education, discovers the association rules of the evaluation data, and introduces the undergraduate comprehensive literacy evaluation model and BP neural network model driven by theory and technology in a mixed learning environment, which promotes students' comprehensive literacy evaluation and builds a good learning environment. The results demonstrate that undergraduate classification prediction accuracy is similar by data mining, and most reach 99.58 percent. So, whether it is the training sample or the test sample, the prediction result of undergraduate comprehensive literacy is acceptable, which illustrates the validity of the data mining algorithm model and has strong application importance for developing a better learning environment.
  2. Ding Y, He T, Satel J, Wang Z
    Atten Percept Psychophys, 2016 05;78(4):1020-9.
    PMID: 26956560 DOI: 10.3758/s13414-016-1079-6
    With two cueing tasks, in the present study we examined output-based inhibitory cueing effects (ICEs) with manual responses to arrow targets following manual or saccadic responses to arrow cues. In all experiments, ICEs were observed when manual localization responses were required to both the cues and targets, but only when the cue-target onset asynchrony (CTOA) was 2,000 ms or longer. In contrast, when saccadic responses were made in response to the cues, ICEs were only observed with CTOAs of 2,000 ms or less-and only when an auditory cue-back signal was used. The present study also showed that the magnitude of ICEs following saccadic responses to arrow cues decreased with time, much like traditional inhibition-of-return effects. The magnitude of ICEs following manual responses to arrow cues, however, appeared later in time and had no sign of decreasing even 3 s after cue onset. These findings suggest that ICEs linked to skeletomotor activation do exist and that the ICEs evoked by oculomotor activation can carry over to the skeletomotor system.
  3. Wang Z, Ramamoorthy R, Xi X, Namazi H
    Math Biosci Eng, 2022 Jan;19(2):1877-1890.
    PMID: 35135233 DOI: 10.3934/mbe.2022088
    There is some evidence representing the sequential formation and elimination of electrical and chemical synapses in particular brain regions. Relying on this feature, this paper presents a purely mathematical modeling study on the synchronization among neurons connected by transient electrical synapses transformed to chemical synapses over time. This deletion and development of synapses are considered consecutive. The results represent that the transient synapses lead to burst synchronization of the neurons while the neurons are resting when both synapses exist constantly. The period of the transitions and also the time of presence of electrical synapses to chemical ones are effective on the synchronization. The larger synchronization error is obtained by increasing the transition period and the time of chemical synapses' existence.
  4. Tong X, Wang Z, Mirab-Balou M
    Zootaxa, 2016 Jan 05;4061(2):181-8.
    PMID: 27395492 DOI: 10.11646/zootaxa.4061.2.8
    Two new species of the genus Asprothrips Crawford, A. bucerus sp. n. and A. punctulosus sp. n. are described and illustrated from China. A. bimaculatus Michel & Ryckewaert, previously known only from Martinique in the French West Indies and Malaysia, is newly recorded from mainland China and Taiwan, along with the first descriptive notes of the male, and the record from China of A. fuscipennis Kudô is considered a misidentification of A. bucerus sp. n. The generic diagnosis of Asprothrips is briefly summarized and an updated key to world species of the genus is also presented.
  5. Melvin GJH, Wang Z, Ni QQ
    Glob Chall, 2019 Nov;3(11):1900045.
    PMID: 31693011 DOI: 10.1002/gch2.201900045
    Agricultural wastes such as rice husks (RHs) are valuable due to their feasibility to be converted into carbon materials, low cost, and abundancy in contrast to the conventional carbon material sources. In this study, RHs are carbonized at various temperatures from low to high temperatures, and their electromagnetic (EM) wave absorption properties are evaluated. Carbon materials, silicon carbide (SiC) whiskers, and SiC particles are obtained from RHs carbonized at 1500 °C (CRH1500) for 0.5 h with presence of Ar gas at 1 atm. In order to evaluate their EM wave absorption performance, complex permittivity and permeability are measured by using vector network analyzer, and the values are utilized in the reflection loss (R.L.) calculation according to the transmission line theory. CRH1500, 40 wt% with thickness of 1.6 mm exhibits minimum R.L. of ≈-55.4 dB (>99.9997% absorption) at 11.37 GHz and response bandwidth (R.L. < 10 dB, > 90% absorption) of 4.21 GHz. Low-cost and abundant RHs, carbonized at various temperatures, show significant absorption performance. Their absorption performance and response bandwidth are highly dependent on matching thickness, indicating that they can be easily modulated for promising electromagnetic wave absorber materials.
  6. Wei R, Wang Z, Zhang X, Wang X, Xu Y, Li Q
    Public Health, 2023 Sep;222:75-84.
    PMID: 37531713 DOI: 10.1016/j.puhe.2023.06.034
    OBJECTIVES: Understanding iodine deficiency (ID) burdens and trends in Asia can help guide effective intervention strategies. This study aims to report the incidence, prevalence, and disability-adjusted life years (DALYs) of ID in 48 Asian countries during the period 1990-2019.

    STUDY DESIGN: Data on ID were retrieved from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 and estimated by age, sex, geographical region, and sociodemographic index (SDI).

    METHODS: The estimated annual percentage change (EAPC) was calculated to evaluate the changing trend of age-standardized incidence rate (ASIR), age-standardized prevalence rate (ASPR), and age-standardized DALYs rate (ASDR) related to ID during the period 1990-2019.

    RESULTS: In Asia, there were 126,983,965.8 cases with 5,466,213.1 new incidence and 1,765,995.5 DALYs of ID in 2019. Between 1999 and 2019, the EAPC in ASIR, ASPR and ASDR were -0.6 (95% confidence interval [CI], -0.8 to -0.4), -0.9 (95% CI, -1.2 to -0.7), and -1.6 (95% CI, -1.8 to -1.5), respectively. Malaysia charted the largest decrease in ASIR, ASPR, and ASDR (82.4%, 85.3%, and 80.9% separately), whereas the Philippines and Pakistan were the only two countries that witnessed an increase in ASIR and ASPR. ID burdens were more pronounced in women, countries located to the south of the Himalayas, and low-middle SDI regions.

    CONCLUSIONS: The incidence, prevalence, and DALYs of ID in Asia substantially decreased from 1990 to 2019. Women and low-middle SDI countries have relatively high ID burdens. Governments need to pay constant attention to the implementation and monitoring of universal salt iodization.

  7. Wang Z, Lechner AM, Yang Y, Baumgartl T, Wu J
    Sci Total Environ, 2020 May 15;717:137214.
    PMID: 32062237 DOI: 10.1016/j.scitotenv.2020.137214
    Open-cut coal mining can seriously disturb and reshape natural landscapes which results in a range of impacts on local ecosystems and the services they provide. To address the negative impacts of disturbance, progressive rehabilitation is commonly advocated. However, there is little research focusing on how these impacts affect ecosystem services within mine sites and changes over time. The aim of this study was to assess the cumulative impacts of mining disturbance and rehabilitation on ecosystem services through mapping and quantifying changes at multiple spatial and temporal scales. Four ecosystem services including carbon sequestration, air quality regulation, soil conservation and water yield were assessed in 1989, 1997, 2005 and 2013. Disturbance and rehabilitation was mapped using LandTrendr algorithm with Landsat. We mapped spatial patterns and pixel values for each ecosystem service with corresponding model and the landscape changes were analyzed with landscape metrics. In addition, we assessed synergies and trade-offs using Spearman's correlation coefficient for different landscape classes and scales. The results showed that carbon sequestration, air quality regulation and water yield services were both positively and negatively affected by vegetation cover changes due to mined land disturbance and rehabilitation, while soil conservation service were mainly influenced by topographic changes. There were strong interactions between carbon sequestration, air quality regulation and water yield, which were steady among different spatial scales and landscape types. Soil conservation correlations were weak and changed substantially due to differences of spatial scales and landscape types. Although there are limitations associated with data accessibility, this study provides a new research method for mapping impacts of mining on ecosystem services, which offer spatially explicit information for decision-makers and environmental regulators to carry out feasible policies, balancing mining development with ecosystem services provision.
  8. Feng H, Wang Z, Sajab MS, Abdul PM, Ding G
    Int J Biol Macromol, 2023 Jan 10;230:123210.
    PMID: 36639077 DOI: 10.1016/j.ijbiomac.2023.123210
    This is the first report of the use of steam flash explosion (SFE) to prepare chitinous nanoparticles from black soldier fly (BSF). SFE treatment was performed at a steam pressure of 0.45 to 1.60 MPa with a holding time of 60 s. As the pressure increased, the particle size of the chitinous particles decreased. Under SFE at 1.60 MPa, chitinous nanoparticles with sizes ranging from 59 to 162 nm were produced. SEM, AFM, Raman spectroscopy, FT-IR spectroscopy, 1H NMR, TGA, and DSC were used to characterize the BSF chitin materials. It was demonstrated that SFE treatment deacetylated chitin to obtain chitosan with 91.24 % deacetylation. In addition, the polymer backbone was maintained, and the degree of polymerization of chitosan nanoparticles was reduced. The activity of the cationic groups of chitosan nanoparticles was improved, thereby enhancing the temperature sensitivity of the polymeric material. It can be concluded that the SFE one-step processing method is a simple and efficient way to prepare homogeneous biomaterial nanoparticles. This study has implications for the development of chitosan nanomaterials for biomedical applications.
  9. Ahmed Z, Wang Z, Mahmood F, Hafeez M, Ali N
    Environ Sci Pollut Res Int, 2019 Jun;26(18):18565-18582.
    PMID: 31054053 DOI: 10.1007/s11356-019-05224-9
    This study focuses to investigate the relationship between globalization and the ecological footprint for Malaysia from 1971 to 2014. The results of the Bayer and Hanck cointegration test and the ARDL bound test show the existence of cointegration among variables. The findings disclose that globalization is not a significant determinant of the ecological footprint; however, it significantly increases the ecological carbon footprint. Energy consumption and economic growth stimulate the ecological footprint and carbon footprint in Malaysia. Population density reduces the ecological footprint and carbon footprint. Further, financial development mitigates the ecological footprint. The causality results disclose the feedback hypothesis between energy consumption and economic growth in the long run and short run.
  10. Lian X, Hong WCH, Xu X, Kimberly KZ, Wang Z
    Int J Dev Disabil, 2023;69(6):946-956.
    PMID: 37885844 DOI: 10.1080/20473869.2022.2033590
    Taking 22 children with mild and moderate autism as subjects and using the TobiiX 120 eye-tracker to record their eye movements in visual search of images in picture books, the characteristics of the process of autistic children viewing picture books were explored. Two measures, fixation counts and gaze duration, were used alongside attention heatmap, to explore the visual patterns among children with autism viewing two types of researcher-made picture books and an ordinary picture book. Using a within-subject design, it was found that children with autism could sustain longer gaze duration and have more fixation points on the effective area of the picture book content when viewing researcher-made picture books than when viewing the ordinary picture book, suggesting better visual attention to single-object and single-pattern picture books. The study offers insights and support for related picture book reading and teaching in the future.
  11. Pailoor J, Rajandram R, Yap NY, Ng KL, Wang Z, Iyengar KR
    Indian J Pathol Microbiol, 2013 Apr-Jun;56(2):98-102.
    PMID: 24056643 DOI: 10.4103/0377-4929.118688
    Chromosome 7 aberrations in renal cell carcinoma (RCC) have been reported in papillary renal cell carcinoma (pRCC) and clear cell renal cell carcinoma (ccRCC). However, the implication of these anomalies on prognosis and survival is still unclear. RCC Chromosome 7 aberrations have commonly been detected by fluorescent in situ hybridization and chromogenic in situ hybridization but not silver in situ hybridization (SISH).
  12. Hu W, Yu XG, Wu S, Tan LP, Song MR, Abdulahi AY, et al.
    J. Helminthol., 2016 Jul;90(4):392-7.
    PMID: 26123649 DOI: 10.1017/S0022149X15000413
    Ancylostoma ceylanicum is a common zoonotic nematode. Cats act as natural reservoirs of the hookworm and are involved in transmitting infection to humans, thus posing a potential risk to public health. The prevalence of feline A. ceylanicum in Guangzhou (South China) was surveyed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). In total, 112 faecal samples were examined; 34.8% (39/112) and 43.8% (49/112) samples were positive with hookworms by microscopy and PCR method, respectively. Among them, 40.8% of samples harboured A. ceylanicum. Twelve positive A. ceylanicum samples were selected randomly and used for cox 1 sequence analysis. Sequencing results revealed that they had 97-99% similarity with A. ceylanicum cox 1 gene sequences deposited in GenBank. A phylogenetic tree showed that A. ceylanicum isolates were divided into two groups: one comprising four isolates from Guangzhou (South China), and the other comprising those from Malaysia, Cambodia and Guangzhou. In the latter group, all A. ceylanicum isolates from Guangzhou were clustered into a minor group again. The results indicate that the high prevalence of A. ceylanicum in stray cats in South China poses a potential risk of hookworm transmission from pet cats to humans, and that A. ceylanicum may be a species complex worldwide.
  13. Tan CK, Said S, Rajandram R, Wang Z, Roslani AC, Chin KF
    World J Surg, 2016 08;40(8):1985-92.
    PMID: 27098538 DOI: 10.1007/s00268-016-3499-9
    INTRODUCTION: Disruption of normal gut function is a common side effect post abdominal surgery. It may result in reduced tolerance to oral nutrition and progress to postoperative ileus. Microbial cell preparation is beneficial as a pre-surgical nutritional supplement to aid in bowel recovery and promote the return of normal gut function following abdominal surgery. The aim of this study was to evaluate the efficacy of pre-surgical administration of microbial cell preparation in promoting the return of normal gut function.

    METHOD: The study is a randomized, double-blind, placebo-controlled trial. In total, 40 patients were recruited. Patients were randomized to receive either microbial cell preparation (n = 20) or placebo (n = 20) for 7 days prior to elective surgery. The primary end point was the time to return of normal gut function, while the secondary end point was the duration of hospital stay.

    RESULTS: The treatment group demonstrated significantly faster return of normal gut function with a median of 108.5 h (80-250 h) which was 48 h earlier than the placebo group at a median of 156.5 h (94-220 h), p = 0.022. The duration of hospital stay in the treatment group was also shorter at a median of 6.5 days (4-30 days), in comparison to the placebo group at 13 days (5-25 days), p = 0.012.

    CONCLUSION: Pre-surgical administration of microbial cell preparation promotes the return of normal gut function in patients after colorectal cancer surgery, thus associated with faster recovery and shorter duration of hospital stay.

  14. Wang Z, Huang S, Jia C, Liu J, Zhang J, Xu B, et al.
    Plant Cell Rep, 2013 Sep;32(9):1373-80.
    PMID: 23652818 DOI: 10.1007/s00299-013-1449-7
    KEY MESSAGE: Three tau class MaGSTs responded to abiotic stress, MaGSTF1 and MaGSTL1 responded to signaling molecules, they may play an important role in the growth of banana plantlet. Glutathione S-transferases (GST) are multifunctional detoxification enzymes that participate in a variety of cellular processes, including stress responses. In this study, we report the molecular characteristics of five GST genes (MaGSTU1, MaGSTU2, MaGSTU3, MaGSTF1 and MaGSTL1) cloned from banana (Musa acuminate L. AAA group, cv. Cavendish) using a RACE-PCR-based strategy. The predicted molecular masses of these GSTs range from 23.4 to 27.7 kDa and their pIs are acidic. At the amino acid level, they share high sequence similarity with GSTs in the banana DH-Pahang (AA group) genome. Phylogenetic analysis showed that the deduced amino acid sequences of MaGSTs also have high similarity to GSTs of other plant species. Expression analysis by semi-quantitative RT-PCR revealed that these genes are differentially expressed in various tissues. In addition, their expression is regulated by various stress conditions, including exposure to signaling molecules, cold, salinity, drought and Fusarium oxysporum f specialis(f. Sp) cubense Tropical Race 4 (Foc TR4) infection. The expression of the tau class MaGSTs (MaGSTU1, MaGSTU2 and MaGSTU3) mainly responded to cold, salinity and drought while MaGSTF1 and MaGSTL1 expressions were upregulated by signaling molecules. Our findings suggest that MaGSTs play a key role in both development and abiotic stress responses.
  15. Wang Z, Tu Z, Xie X, Cui H, Kong KW, Zhang L
    Foods, 2021 Feb 03;10(2).
    PMID: 33546380 DOI: 10.3390/foods10020315
    This study aims to evaluate the bioactive components, in vitro bioactivities, and in vivo hypoglycemic effect of P. frutescens leaf, which is a traditional medicine-food homology plant. P. frutescens methanol crude extract and its fractions (petroleum ether, chloroform, ethyl acetate, n-butanol fractions, and aqueous phase residue) were prepared by ultrasound-enzyme assisted extraction and liquid-liquid extraction. Among the samples, the ethyl acetate fraction possessed the high total phenolic (440.48 μg GAE/mg DE) and flavonoid content (455.22 μg RE/mg DE), the best antioxidant activity (the DPPH radical, ABTS radical, and superoxide anion scavenging activity, and ferric reducing antioxidant power were 1.71, 1.14, 2.40, 1.29, and 2.4 times higher than that of control Vc, respectively), the most powerful α-glucosidase inhibitory ability with the IC50 value of 190.03 μg/mL which was 2.2-folds higher than control acarbose, the strongest proliferative inhibitory ability against MCF-7 and HepG2 cell with the IC50 values of 37.92 and 13.43 μg/mL, which were considerable with control cisplatin, as well as certain inhibition abilities on acetylcholinesterase and tyrosinase. HPLC analysis showed that the luteolin, rosmarinic acid, rutin, and catechin were the dominant components of the ethyl acetate fraction. Animal experiments further demonstrated that the ethyl acetate fraction could significantly decrease the serum glucose level, food, and water intake of streptozotocin-induced diabetic SD rats, increase the body weight, modulate their serum levels of TC, TG, HDL-C, and LDL-C, improve the histopathology and glycogen accumulation in liver and intestinal tissue. Taken together, P. frutescens leaf exhibits excellent hypoglycemic activity in vitro and in vivo, and could be exploited as a source of natural antidiabetic agent.
  16. Wang Z, Zhang F, Zhang X, Chan NW, Kung HT, Ariken M, et al.
    Sci Total Environ, 2021 Feb 12;775:145807.
    PMID: 33618298 DOI: 10.1016/j.scitotenv.2021.145807
    Soil salinization is an extremely serious land degradation problem in arid and semi-arid regions that hinders the sustainable development of agriculture and food security. Information and research on soil salinity using remote sensing (RS) technology provide a quick and accurate assessment and solutions to address this problem. This study aims to compare the capabilities of Landsat-8 OLI and Sentinel-2A MSI in RS prediction and exploration of the potential application of derivatives to RS prediction of salinized soils. It explores the ability of derivatives to be used in the Landsat-8 OLI and Sentinel-2A MSI multispectral data, and it was used as a data source as well as to address the adaptability of salinity prediction on a regional scale. The two-dimensional (2D) and three-dimensional (3D) optimal spectral indices are used to screen the bands that are most sensitive to soil salinity (0-10 cm), and RS data and topographic factors are combined with machine learning to construct a comprehensive soil salinity estimation model based on gray correlation analysis. The results are as follows: (1) The optimal spectral index (2D, 3D) can effectively consider possible combinations of the bands between the interaction effects and responding to sensitive bands of soil properties to circumvent the problem of applicability of spectral indices in different regions; (2) Both the Landsat-8 OLI and Sentinel-2A MSI multispectral RS data sources, after the first-order derivative techniques are all processed, show improvements in the prediction accuracy of the model; (3) The best performance/accuracy of the predictive model is for sentinel data under first-order derivatives. This study compared the capabilities of Landsat-8 OLI and Sentinel-2A MSI in RS prediction in finding the potential application of derivatives to RS prediction of salinized soils, with the results providing some theoretical basis and technical guidance for salinized soil prediction and environmental management planning.
  17. Li Y, Van Toan N, Wang Z, Samat KFB, Ono T
    Nanoscale Res Lett, 2021 Apr 20;16(1):64.
    PMID: 33877472 DOI: 10.1186/s11671-021-03524-z
    Porous silicon (Si) is a low thermal conductivity material, which has high potential for thermoelectric devices. However, low output performance of porous Si hinders the development of thermoelectric performance due to low electrical conductivity. The large contact resistance from nonlinear contact between porous Si and metal is one reason for the reduction of electrical conductivity. In this paper, p- and n-type porous Si were formed on Si substrate by metal-assisted chemical etching. To decrease contact resistance, p- and n-type spin on dopants are employed to dope an impurity element into p- and n-type porous Si surface, respectively. Compared to the Si substrate with undoped porous samples, ohmic contact can be obtained, and the electrical conductivity of doped p- and n-type porous Si can be improved to 1160 and 1390 S/m, respectively. Compared with the Si substrate, the special contact resistances for the doped p- and n-type porous Si layer decreases to 1.35 and 1.16 mΩ/cm2, respectively, by increasing the carrier concentration. However, the increase of the carrier concentration induces the decline of the Seebeck coefficient for p- and n-type Si substrates with doped porous Si samples to 491 and 480 μV/K, respectively. Power factor is related to the Seebeck coefficient and electrical conductivity of thermoelectric material, which is one vital factor that evaluates its output performance. Therefore, even though the Seebeck coefficient values of Si substrates with doped porous Si samples decrease, the doped porous Si layer can improve the power factor compared to undoped samples due to the enhancement of electrical conductivity, which facilitates its development for thermoelectric application.
  18. Li R, Ru Y, Wang Z, He X, Kong KW, Zheng T, et al.
    Molecules, 2021 Jul 24;26(15).
    PMID: 34361630 DOI: 10.3390/molecules26154472
    In this study, we aimed to investigate the chemical components and biological activities of Musella lasiocarpa, a special flower that is edible and has functional properties. The crude methanol extract and its four fractions (petroleum ether, ethyl acetate, n-butanol, and aqueous fractions) were tested for their total antioxidant capacity, followed by their α-glucosidase, acetylcholinesterase, and xanthine oxidase inhibitory activities. Among the samples, the highest total phenolic and total flavonoid contents were found in the ethyl acetate (EtOAc) fraction (224.99 mg GAE/g DE) and crude methanol extract (187.81 mg QE/g DE), respectively. The EtOAc fraction of Musella lasiocarpa exhibited the strongest DPPH· scavenging ability, ABTS·+ scavenging ability, and α-glucosidase inhibitory activity with the IC50 values of 22.17, 12.10, and 125.66 μg/mL, respectively. The EtOAc fraction also showed the strongest ferric reducing antioxidant power (1513.89 mg FeSO4/g DE) and oxygen radical absorbance capacity ability (524.11 mg Trolox/g DE), which were higher than those of the control BHT. In contrast, the aqueous fraction demonstrated the highest acetylcholinesterase inhibitory activity (IC50 = 10.11 μg/mL), and the best xanthine oxidase inhibitory ability (IC50 = 5.23 μg/mL) was observed from the crude methanol extract as compared with allopurinol (24.85 μg/mL). The HPLC-MS/MS and GC-MS analyses further revealed an impressive arsenal of compounds, including phenolic acids, fatty acids, esters, terpenoids, and flavonoids, in the most biologically active EtOAc fraction. Taken together, this is the first report indicating the potential of Musella lasiocarpa as an excellent natural source of antioxidants with possible therapeutic, nutraceutical, and functional food applications.
  19. Sun XY, Ma KN, Bai Y, Liu RD, Long SR, Zhang X, et al.
    Trop Biomed, 2021 Sep 01;38(3):420-434.
    PMID: 34608116 DOI: 10.47665/tb.38.3.085
    Trichinellosis is an important zoonotic parasitic disease worldwide and is principally caused by ingesting animal meat containing Trichinella infective larvae. Aspartyl aminopeptidase is an intracytoplasmic metalloproteinase that specifically hydrolyzes the N-terminus of polypeptides free of acidic amino acids (aspartic acid and glutamate), and plays an important role in the metabolism, growth and development of organisms. In this study, a novel T. spiralis aspartyl aminopeptidase (TsAAP) was cloned and expressed, and its biological properties and roles in worm growth and development were investigated. The results revealed that TsAAP transcription and expression in diverse T. spiralis stages were detected by RT-PCR and Western blotting, and primarily localized at cuticle, stichosome and intrauterine embryos of this nematode by immunofluorescence test. rTsAAP has the enzymatic activity of native AAP to hydrolyze the substrate H-Glu-pNA. There was a specific binding between rTsAAP and murine erythrocyte, and the binding site was localized in erythrocyte membrane proteins. Silencing of TsAAP gene by specific dsRNA significantly reduced the TsAAP expression, enzymatic activity, intestinal worm burdens and female fecundity. The results demonstrated that TsAAP participates in the growth, development and fecundity of T. spiralis and it might be a potential target molecule for anti-Trichinella vaccines.
  20. Wang Z, Lü TY, Wang HQ, Feng YP, Zheng JC
    Sci Rep, 2017 04 04;7(1):609.
    PMID: 28377622 DOI: 10.1038/s41598-017-00667-x
    New crystal structures of fully hydrogenated borophene (borophane) have been predicted by first principles calculation. Comparing with the chair-like borophane (C-boropane) that has been reported in literature, we obtained four new borophane conformers with much lower total-energy. The most stable one, washboard-like borophane (W-borophane), has energy about 113.41 meV/atom lower than C-borophane. In order to explain the relative stability of different borophane conformers, the atom configuration, density of states, charge transfer, charge density distribution and defect formation energy of B-H dimer have been calculated. The results show that the charge transfer from B atoms to H atoms is crucial for the stability of borophane. In different borophane conformers, the bonding characteristics between B and H atoms are similar, but the B-B bonds in W-borophane are much stronger than that in C-borophane or other structures. In addition, we examined the dynamical stability of borophane conformers by phonon dispersions and found that the four new conformers are all dynamically stable. Finally the mechanical properties of borophane conformers along an arbitrary direction have been discussed. W-borophane possesses unique electronic structure (Dirac cone), good stability and superior mechanical properties. W-borophane has broad perspective for nano electronic device.
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links