Displaying all 3 publications

Abstract:
Sort:
  1. Lew MH, Lim RL
    Appl Microbiol Biotechnol, 2016 Jan;100(2):661-71.
    PMID: 26411458 DOI: 10.1007/s00253-015-6953-y
    Current diagnostic tools for peanut allergy using crude peanut extract showed low predictive value and reduced specificity for detection of peanut allergen-specific immunoglobulin E (IgE). The Ara h 2.02, an isoform of the major peanut allergen Ara h 2, contains three IgE epitope recognition sequence of 'DPYSPS' and may be a better reagent for component resolve diagnosis. This research aimed to generate a codon-optimised Ara h 2.02 gene for heterologous expression in Escherichia coli and allergenicity study of this recombinant protein. The codon-optimised gene was generated by PCR using overlapping primers and cloned into the pET-28a (+) expression vector. Moderate expression of a 22.5 kDa 6xhistidine-tagged recombinant Ara h 2.02 protein (6xHis-rAra h 2.02) in BL21 (DE3) host cells was observed upon induction with 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG). The insoluble recombinant protein was purified under denaturing condition using nickel-nitrilotriacetic acid (Ni-NTA) affinity chromatography and refolded by dialysis in decreasing urea concentration, amounting to a yield of 74 mg/l of expression culture. Matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) and immunoblot analysis confirmed the production of the recombinant 6xHis-rAra h 2.02. The refolded recombinant 6xHis-rAra h 2.02, with or without adjuvant, was able to elicit comparable level of allergen-specific IgE and IgG1 in sensitised Balb/c mice. In addition, the specific IgE antibodies raised against the recombinant protein were able to recognise the native Ara h 2 protein, demonstrating its allergenicity and potential as a reagent for diagnosis and therapeutic study.
    Matched MeSH terms: 2S Albumins, Plant/biosynthesis; 2S Albumins, Plant/genetics*; 2S Albumins, Plant/immunology*; 2S Albumins, Plant/chemistry
  2. Chan CJ, Yong YS, Song AAL, Abdul Rahim R, In LLA, Lim RLH
    J Appl Microbiol, 2020 Mar;128(3):862-874.
    PMID: 31758869 DOI: 10.1111/jam.14524
    AIM: To study the prophylactic effect of recombinant Lactococcus lactis (rLl) harbouring Ara h 2.02 peanut allergen, in sensitized and challenged mice.

    METHODS AND RESULTS: Ara h 2.02 cDNA was cloned into pNZ8048 for heterologous expression in L. lactis. The purified recombinant allergen showed IgE binding comparable with native Ara h 2. Balb/c mice were fed with either recombinant (rLl), nonrecombinant L. lactis (Ll) or NaHCO3 (Sham) prior to sensitization and challenged with rAra h 2.02, whereas the baseline group was only fed with Ll. Allergen-specific immunoglobulin and splenocyte cytokines responses were determined for each mouse. Mice fed with either Ll or rLl showed significant alleviation of IgE and IgG1 compared to the Sham group. Despite no significant decrease in Th2 (IL-4, IL-13, IL-6) or increase in Th1 (IFN-γ) cytokines, both groups showed lower IL-10 level, while the IL-4 : IFN-γ ratio was significantly lower for rLl compared to Ll group.

    CONCLUSIONS: Oral administration of rLl harbouring Ara h 2.02 demonstrated alleviation of Th2-associated responses in allergen-challenged mice and a possible added allergen-specific prophylactic effect.

    SIGNIFICANCE AND IMPACT OF THE STUDY: Ara h 2.02 coupled with the intrinsic properties of probiotic L. lactis as a delivery vehicle can be explored for the development of a commercially scalable vaccine.

    Matched MeSH terms: 2S Albumins, Plant/genetics; 2S Albumins, Plant/immunology*
  3. Jambari NN, Liddell S, Martinez-Pomares L, Alcocer MJC
    PLoS One, 2021;16(4):e0249876.
    PMID: 33914740 DOI: 10.1371/journal.pone.0249876
    Ber e 1, a major Brazil nut allergen, has been successfully produced in the yeast Pichia pastoris expression system as homogenous recombinant Ber e 1 (rBer e 1) with similar physicochemical properties and identical immunoreactivity to its native counterpart, nBer e 1. However, O-linked glycans was detected on the P.pastoris-derived rBer e 1, which is not naturally present in nBer e 1, and may contribute to the allergic sensitisation. In this study, we addressed the glycosylation differences between P. pastoris-derived recombinant Ber e 1 and its native counterparts. We also determined whether this fungal glycosylation could affect the antigenicity and immunogenicity of the rBer e 1 by using dendritic cells (DC) as an immune cell model due to their role in modulating the immune response. We identified that the glycosylation occurs at Ser96, Ser101 and Ser110 on the large chain and Ser19 on the small polypeptide chain of rBer e 1 only. The glycosylation on rBer e 1 was shown to elicit varying degree of antigenicity by binding to different combination of human leukocyte antigens (HLA) at different frequencies compared to nBer e 1 when tested using human DC-T cell assay. However, both forms of Ber e 1 are weak immunogens based from their low response indexes (RI). Glycans present on rBer e 1 were shown to increase the efficiency of the protein recognition and internalization by murine bone marrow-derived dendritic cells (bmDC) via C-type lectin receptors, particularly the mannose receptor (MR), compared to the non-glycosylated nBer e 1 and SFA8, a weak allergenic 2S albumin protein from sunflower seed. Binding of glycosylated rBer e 1 to MR alone was found to not induce the production of IL-10 that modulates bmDC to polarise Th2 cell response by suppressing IL-12 production and DC maturation. Our findings suggest that the O-linked glycosylation by P. pastoris has a small but measurable effect on the in vitro antigenicity of the rBer e 1 compared to its non-glycosylated counterpart, nBer e 1, and thus may influence its applications in diagnostics and immunotherapy.
    Matched MeSH terms: 2S Albumins, Plant/genetics; 2S Albumins, Plant/immunology*; 2S Albumins, Plant/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links