This study was carried out to compare the ultrastructure of fresh, capacitated and acrosome-reacted sperm. The sperm was treated with heparin for capacitation and calcium ionophore for acrosome reaction induction. Sperm samples were then prepared for ultrastructural studies and examined by transmission electron microscopy (TEM). Ultrastructural changes in plasma and acrosomal membranes, shape of the mitochondria and outer dense fibres, in capacitated and acrosome-reacted sperm were evident. The plasma membrane of fresh sperm was loosely fitted around the sperm head and the acrosomal membrane was closely opposed to the nucleus. The plasma and acrosomal membranes of the capacitated sperm were expanded, but disintegrated in the acrosome-reacted sperm. Mitochondria of fresh sperm appeared to be rounded in shape with plasma membrane closely opposed to it and the nine outer dense fibres were almost regular rounded in shape. However, in both capacitated and acrosome-reacted sperm, the mitochondria were almost regular and elongated in shape whilst the outer dense fibres were irregular in shape in the capacitated and acrosome-reacted sperm. There were no noticeable morphological changes found in the axonemal complexes in fresh, capacitated and acrosome-reacted sperm. Ultrastructural studies are able to provide detailed information on sequential events involving numerous physiological changes during fertilization.
Objective: To review and present the most distinct concepts on the association of reactive oxygen species (ROS) with male reproduction. Methods: The Preferred Reporting Items for Systematic Reviews and Meta Analyses (PRISMA) guidelines were used to search PubMed, Medline, EMBASE, and the Cochrane electronic databases for studies investigating the role of oxidative stress (OS) on sperm function. Results: The literature search yielded 1857 studies, of which 1791 articles were excluded because of irrelevance of data, non-English language, non-human nature or because they were case reports or commentaries. All included studies were reviews (46), meta-analyses (one), original research studies (18) and guideline articles (one). The studies were published between 1984 and 2018. Under normal physiological conditions, ROS are vital for sperm maturation, hyperactivation, capacitation, acrosome reaction, as well as fertilisation. However, a number of endogenous and exogenous causes may induce supra-physiological levels of ROS resulting in lipid peroxidation, sperm DNA fragmentation and apoptosis, and consequently infertility. Several laboratory testing methods can be used in infertile men to diagnose OS. Treatment usually involves antioxidant supplementation and, when possible, elimination of the causative factor. Conclusion: OS is an important cause of male factor infertility. Its assessment provides essential information that can guide treatment strategies aimed at improving the male's reproductive potential. Abbreviations: bp: base-pair; CAT: catalase; LPO: lipid peroxidation; MDA: malondialdehyde; MiOXSYS: Male Infertility Oxidative System; mtDNA: mitochondrial DNA; NAD(PH): nicotinamide adenine dinucleotide (phosphate); NO: nitric oxide; 8-OHdG: 8-hydroxy-2'-deoxyguanosine; ORP: oxidation-reduction potential; OS: oxidative stress; PKA: protein kinase A; PLA2: phospholipase A2; PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses; PUFA: poly-unsaturated fatty acid; ROS: reactive oxygen species; SOD: superoxide dismutase; TAC: total antioxidant capacity; TBA: thiobarbituric acid.
The present study evaluated the relationship between Bali bull (Bos javanicus) seminal plasma proteins and different semen quality parameters. Semen samples from 10 mature Bali bulls were evaluated for conventional semen parameters (general motility, viability, and normal morphology), sperm functionality (acrosome reaction, sperm penetration rate, sperm penetration index), sperm kinetics (computer-assisted semen analysis parameters such as sperm velocity), and sperm morphology (acrosome and membrane integrity). Frozen-thawed semen with higher sperm motility, viability, acrosome integrity, and membrane integrity (P < 0.05) are consistently higher in acrosome reaction and sperm penetration assay. Three bulls showed the highest, four bulls displayed the medium, and the remaining three bulls showed the lowest for all sperm parameters and SPA. The proteome maps of seminal plasma from high-quality and low-quality Bali bulls were also established. Seminal plasma of both high-quality and low-quality Bali bulls was subjected to two-dimensional SDS-PAGE with isoelectric point ranged from 3 to 10 and molecular weight from 10 to 250 kDa. Approximately 116 spots were detected with Blue Silver stain, and of these spots, 29 were selected and identified by MALDI-TOF/TOF-MS/MS. A majority of the proteins visualized in the seminal plasma two-dimensional maps was successfully identified. An essential group of the identified spots represented binder of sperm 1 (BSP1), clusterin, spermadhesin, tissue inhibitor of metalloproteinases 2 (TIMP-2), and phospholipase A2 (PLA2). Other proteins found in high abundance included seminal ribonuclease, serum albumin, cationic trypsin, and peptide similar to β2 microglobulin. Thus, a reference map of Bali bull seminal plasma proteins has been generated for the very first time and can be used to relate protein pattern changes to physiopathologic events that may influence Bali bull reproductive performance.