Displaying all 3 publications

Abstract:
Sort:
  1. Akram Hassan, Swaminathan D
    Hydroxyapatite (HA) used for bone replacement is one of the most active areas of ceramic biomaterials research currently. It has been used clinically for the last 20 years due to its excellent biocompatibility, osseoconduction and osseointegration. Many modifications have been done to develop a stronger, tougher and biocompatible ceramic biomaterial because pure HA is brittle. Researchers in Universiti Sains Malaysia had developed this value added HA that is stronger and less brittle compared to pure HA. The objective of this in vitro study was to evaluate the genotoxic characteristic of the value added HA based material by using Bacterial Reverse Mutation Assay (Ames test). The Bacterial Reverse Mutation Assay of HA was performed on Salmonella typhimurium strains TA98, TA100, TA1535, TA1537 and Escherichia coli strain WP2 uvrA using the preincubation method in the presence and absence of an exogenous metabolic activation system. All the bacterial tester strains treated with and without S9 Mix showed no increase of revertant colonies with increase in concentration of test substance for both the dose finding test and the main test. The number of revertant colonies was less than twice that of the solvent control for all the five bacterial strains and this was reproducible for both the dose finding test and the main test. The numbers of revertant colonies in the negative and positive controls were within the background data of our laboratory. In conclusion the results of the tests showed that the value added HA was considered to have no reverse mutagenic potential under the present test conditions.
    Matched MeSH terms: Activation, Metabolic
  2. Rosdi R.A., Yusoff S., Mohd Yusoff N., Ismail R., Tan, C.S., Musa N.
    MyJurnal
    It has been recognized extensively that studies of pharmacogenetics provide massive examples of causal relationship between genotypes and drug effectiveness to account for interindividual phenotypic variations in drug therapy. In most cases, cytochrome P450 (CYP) polymorphisms are one of the major variables that affecting those drug plasma concentration, drug detoxification and drug activation in humans. Thus, understanding of CYP polymorphisms can be crucially valuable in order to allow early and more accurate drug dosage prediction and improve the drug response accordingly. Despite the high level of homologous amino acid sequences, CYP2C9 and CYP2C19 genes are among the most important CYP genes which metabolize a wide range of clinically therapeutic drugs. Several critical reviews have been published relating to the aforementioned genes. However, this minireview aims to systematically merge reported studies on the SNPs frequencies of both genes concentrating only on Malaysian population. It is hoped that, the minireview can be an opener for new opportunities to reevaluate the evidence on the prevalence of CYP2C genes as a potential genetic factor influencing a particular drug efficacy and safety among Malaysian. Such evaluation can be developed to the next level of early prediction of better and specific drug treatment, thereby improving the drug response while helping the government in minimising the drug expenditures.
    Matched MeSH terms: Inactivation, Metabolic; Activation, Metabolic
  3. Wahab NFAC, Kannan TP, Mahmood Z, Rahman IA, Ismail H
    Toxicol In Vitro, 2018 Mar;47:207-212.
    PMID: 29247761 DOI: 10.1016/j.tiv.2017.12.002
    Biphasic Calcium Phosphate (BCP) with a ratio of 20/80 Hydroxyapatite (HA)/Beta-tricalcium phosphate (β-TCP) promotes the differentiation of human dental pulp cells (HDPCs). In the current study, the genotoxicity of locally produced BCP of modified porosity (65%) with a mean pore size of 300micrometer (μm) was assessed using Comet and Ames assays. HDPCs were treated with BCP extract at three different inhibitory concentrations which were obtained based on cytotoxicity test conducted with concurrent negative and positive controls. The tail moment of HDPCs treated with BCP extract at all three concentrations showed no significant difference compared to negative control (p>0.05), indicating that BCP did not induce DNA damage to HDPCs. The BCP was evaluated using five tester strains of Salmonella typhimurium TA98, TA100, TA102, TA1537 and TA1538. Each strain was incubated with BCP extract with five different concentrations in the presence and absence of metabolic activation system (S9) mix. Concurrently, negative and positive controls were included. The average number of revertant colonies per plate treated with the BCP extract was less than double as compared to the number of revertant colonies in negative control plate and no dose-related increase was observed. Results from both assays suggested that the BCP of modified porosity did not exhibit any genotoxic effect under the present test conditions.
    Matched MeSH terms: Activation, Metabolic
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links