Displaying all 2 publications

Abstract:
Sort:
  1. Ahmad F, Soelaiman IN, Ramli ES, Hooi TM, Suhaimi FH
    Clinics (Sao Paulo), 2011;66(5):849-53.
    PMID: 21789391
    INTRODUCTION: Prolonged steroid treatment administered to any patient can cause visceral obesity, which is associated with metabolic disease and Cushing's syndrome. Glucocorticoids have a profound negative effect on adipose tissue mass, giving rise to obesity, which in turn is regulated by the 11β-hydroxysteroid dehydrogenase type 1 enzyme. Adrenalectomized rats treated with dexamethasone exhibited an increase in visceral fat deposition but not in body weight.

    OBJECTIVES: The main aim of this study was to determine the effect of dexamethasone on the histomorphometric characteristics of perirenal adipocytes of adrenalectomized, dexamethasone-treated rats (ADR+Dexa) and the association of dexamethasone treatment with the expression and activity of 11 β-hydroxysteroid dehydrogenase type 1 (11 β-hydroxysteroid dehydrogenase type 1).

    METHODS: A total of 20 male Sprague Dawley rats were divided into 3 groups: a baseline control group (n = 6), a sham-operated group (n = 7) and an adrenalectomized group (n=7). The adrenalectomized group was given intramuscular dexamethasone (ADR+Dexa) 2 weeks post adrenalectomy, and the rats from the sham-operated group were administered intramuscular vehicle (olive oil).

    RESULTS: Treatment with 120 μg/kg intramuscular dexamethasone for 8 weeks resulted in a significant decrease in the diameter of the perirenal adipocytes (p<0.05) and a significant increase in the number of perirenal adipocytes (p<0.05). There was minimal weight gain but pronounced fat deposition in the dexamethasone-treated rats. These changes in the perirenal adipocytes were associated with high expression and dehydrogenase activity of 11β-hydroxysteroid dehydrogenase type 1.

    CONCLUSIONS: In conclusion, dexamethasone increased the deposition of perirenal fat by hyperplasia, which causes increases in the expression and dehydrogenase activity of 11 β-hydroxysteroid dehydrogenase type 1 in adrenalectomized rats.

    Matched MeSH terms: Adipose Tissue/enzymology*
  2. Abu Bakar MH, Shariff KA, Tan JS, Lee LK
    Eur J Pharmacol, 2020 Sep 15;883:173371.
    PMID: 32712089 DOI: 10.1016/j.ejphar.2020.173371
    Accumulating evidence indicates that adipose tissue inflammation and mitochondrial dysfunction in skeletal muscle are inextricably linked to obesity and insulin resistance. Celastrol, a bioactive compound derived from the root of Tripterygium wilfordii exhibits a number of attributive properties to attenuate metabolic dysfunction in various cellular and animal disease models. However, the underlying therapeutic mechanisms of celastrol in the obesogenic environment in vivo remain elusive. Therefore, the current study investigated the metabolic effects of celastrol on insulin sensitivity, inflammatory response in adipose tissue and mitochondrial functions in skeletal muscle of the high fat diet (HFD)-induced obese rats. Our study revealed that celastrol supplementation at 3 mg/kg/day for 8 weeks significantly reduced the final body weight and enhanced insulin sensitivity of the HFD-fed rats. Celastrol noticeably improved insulin-stimulated glucose uptake activity and increased expression of plasma membrane GLUT4 protein in skeletal muscle. Moreover, celastrol-treated HFD-fed rats showed attenuated inflammatory responses via decreased NF-κB activity and diminished mRNA expression responsible for classically activated macrophage (M1) polarization in adipose tissues. Significant improvement of muscle mitochondrial functions and enhanced antioxidant defense machinery via restoration of mitochondrial complexes I + III linked activity were effectively exhibited by celastrol treatment. Mechanistically, celastrol stimulated mitochondrial biogenesis attributed by upregulation of the adenosine monophosphate-activated protein kinase (AMPK) and sirtuin 1 (SIRT1) signaling pathways. Together, these results further demonstrate heretofore the conceivable therapeutic mechanisms of celastrol in vivo against HFD-induced obesity mediated through attenuation of inflammatory response in adipose tissue and enhanced mitochondrial functions in skeletal muscle.
    Matched MeSH terms: Adipose Tissue/enzymology
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links