Pioglitazone, a therapeutic drug for diabetes, possesses full PPAR-γ agonist activity and increase circulating adiponectin plasma concentration. Plasma adiponectin concentration decreases in hypertensive patients with renal dysfunctions. Present study investigated the reno-protective, altered excretory functions and renal haemodynamic responses to adrenergic agonists and ANG II following separate and combined therapy with pioglitazone in diabetic model of hypertensive rats. Pioglitazone was given orally [10mg/kg/day] for 28 days and adiponectin intraperitoneally [2.5μg/kg/day] for last 7 days. Groups of SHR received either pioglitazone or adiponectin in combination. A group of Wistar Kyoto rats [WKY] served as normotensive controls, whereas streptozotocin administered SHRs served as diabetic hypertensive rats. Metabolic data and plasma samples were taken on day 0, 8, 21 and 28. In acute studies, the renal vasoconstrictor actions of Angiotensin II [ANGII], noradrenaline [NA], phenylephrine [PE] and methoxamine [ME] were determined. Diabetic SHRs control had a higher basal mean arterial blood pressure than the WKY, lower RCBP and plasma adiponectin, higher creatinine clearance and urinary sodium excretion compared to WKY [all P<0.05] which were normalized by the individual drug treatments and to greater degree following combined treatment. Responses to intra-renal administration of NA, PE, ME and ANGII were larger in diabetic SHR than WKY and SHRs [P<0.05]. Adiponectin significantly blunted responses to NA, PE, ME and ANG II in diabetic treated SHRs by 40%, whereas the pioglitazone combined therapy with adiponectin further attenuated the responses to adrenergic agonists by 65%. [all P <0.05]. These findings suggest that adiponectin possesses renoprotective effects and improves renal haemodynamics through adiponectin receptors and PPAR-γ in diabetic SHRs, suggesting that synergism exists between adiponectin and pioglitazone. A cross-talk relationship also supposed to exists between adiponectin receptors, PPAR-γ and alpha adrenoceptors in renal vasculature of diabetic SHRs.
BACKGROUND: In our previous study, the aqueous extract of Channa striatus (family: Channidae) fillet (AECSF) showed an antidepressant-like effect in mice. However, the mechanism of the antidepressant-like effect is unknown.
AIM: The objective of this study was to explore the involvement of monoamines in the antidepressant-like effect of AECSF in mice.
MATERIALS AND METHODS: AECSF was prepared by steaming the fillets of C. striatus. The male ICR mice were pretreated with various monoaminergic antagonists viz., p-chlorophenylalanine (100 mg/kg, i.p.), prazosin (1 mg/kg, i.p.) and yohimbine (1 mg/kg, i.p.), SCH23390 (0.05 mg/kg, s.c.) and sulpiride (50 mg/kg, i.p.) followed by treatment with AECSF and tested in tail suspension test (TST). Two-way ANOVA with Tukey test were used at p < 0.05 for significance.
RESULTS: The pretreatments with p-chlorophenylalanine, prazosin and yohimbine, but not with SCH23390 and sulpiride, were able to reverse the antidepressant-like effect of AECSF in TST.
CONCLUSIONS: The antidepressant-like effect of AECSF may be mediated through the serotonergic and noradrenergic systems and not through the dopaminergic system.
1 Interaction between renin-angiotensin (RAS) and sympathetic nervous systems (SNS) was investigated by examining the effect of cumulative blockade of angiotensin II (Ang II) and adrenergic receptors in normal Sprague Dawley rats. 2 Rats were treated with losartan (10 mg/kg), carvedilol (5 mg/kg), or losartan plus carvedilol (10+5 mg/kg) orally for 7 days. On day 8, the animals were anaesthetized with pentobarbitone and prepared for systemic haemodynamic study. Dose-response relationships for the elevation of mean arterial pressure or change in heart rate (HR) in response to intravenous injections of noradrenaline (NA), phenylephrine (PE), methoxamine (ME) and Ang II were determined. 3 Losartan or the combination of losartan with carvedilol blunted vasopressor responses to ME and Ang II. Dose-response relationships for agonist action on HR were significantly inhibited by all treatments except for the combination of losartan and carvedilol on the decrease in HR induced by PE. Carvedilol decreased vasopressor responses to NA, PE and Ang II, and HR responses to NA, ME and Ang II. Combination treatment produced similar effects to losartan on the vasopressor and HR responses but had a greater effect on vasopressor responses to ME and Ang II, and on HR responses to NA and Ang II than carvedilol alone. 4 It is concluded that peripheral vasoconstriction induced by Ang II is partly mediated by adrenergic action and that the vasopressor responses to adrenergic agonists depend on an intact RAS. These observations suggest an interactive relationship between RAS and SNS in determining systemic haemodynamic responses in 'normal' rats.
This study investigated the influence of angiotensin II (Ang II) receptor and adrenergic blockade on the renal vasoconstrictions caused by Ang II and adrenergic agonists in spontaneously hypertensive rats (SHR).