Pumping air through a soft tissue which acts as a membrane is a relatively easy and quick method to collect and measure radon/thoron and its daughter nuclides in air. Analysis of the activity of the radionuclides can be calculated using an alpha counter which has been calibrated. In this method the activity of radon/thoron cannot be separated from the activity of radionuclides already present in the aerosol or dust particles.
Matched MeSH terms: Air Pollutants, Radioactive/analysis*
When the definition of calm in atmospheric diffusion analyses is changed from 0.5 m s-1 to 0.1 m s-1, actual and more accurate low wind speeds and wind directions can be used to calculate the average air concentrations due to continuous releases of radionuclides at 10-m stack height more realistically and accurately. However, this modified calm condition has little affect on the calculated adult thyroid exposure for a postulated accident.
Matched MeSH terms: Air Pollutants, Radioactive/analysis*
Crude oil terminal sludge contains technologically enhanced naturally occurring radionuclides such as (232)Th, (238)U, (228)Ra and (226)Ra, thus cannot be disposed of freely without proper control. The current method of disposal, such as land farming and storing in plastic drums is not recommended because it will have a long-term impact on the environment. Due to its organic nature, there is a move to treat this sludge by thermal methods such as incineration. This study has been carried out to determine the behaviors of (232)Th, (238)U, (228)Ra and (226)Ra present in the sludge during combustion at a certain temperature and time. The percentage of volatilization was found to vary between 2% and 70%, (238)U was the most volatile in comparison with (232)Th, (228)Ra and (226)Ra. (238)U is found to be significantly volatilized above 500 degrees C, and might reach maximum volatilization at above 700 degrees C. A mathematical model was developed to predict the percentage of volatilization of (232)Th, (238)U, (228)Ra and (226)Ra contained in the sludge. With this known percentage of volatilization, the concentration of (232)Th, (238)U, (228)Ra and (226)Ra present in the bottom and filter ashes can be calculated.
Matched MeSH terms: Air Pollutants, Radioactive/analysis*
Continuous depletion in tin productions has led to a newly emerging industry that is a tin by-product (amang) processing industry to harness mega tons of tin by-products produced in the past. Amang composed of profitable multi-heavy minerals and rare-earth elements. With poorly established safety and health practices in operating plant, amang poses extremely high radioactivity problem associated with high occupational ionizing radiation exposures to workers and continuously impacting the local environment with radioactive contamination from industrial effluent and solid waste into lithosphere and water bodies. The radioactivity level of 238U and 232Th series in the mineral varies from few hundreds up to ~200,000 and ~400,000 Bq kg-1 respectively and are potential to yield more than ~ 30,000 nGy h-1 of gamma (γ) radiation exposure to plant workers. The study found out that for 8 h of work time, a worker is estimated to receive an average effective dose of 0.1 mSv per day from external γ radiation source with a maximum up to 2 mSv per day for extreme exposure situation. Interferences of different exposure routes for examples inhalation of equivalent equilibrium concentration (ECC) of 222Rn and 220Rn progenies and airborne long-lived α particles from the dusty working environment could pose a higher total effective dose as much as 5 mSv per day and 115 mSv per year. The value is 5 times higher than the annual dose limit for designated radiation worker (20 mSv) in Peninsular Malaysia. The study found that 41% of the total received an effective dose received by a worker is contributed by 222Rn, 32% of airborne particulates and dust, 23% from external γ exposure and 4% from 220Rn. Based on radioecological risk assessment, the study found out that the aquatic environment is the highly exposed group to ionizing radiation from industrial effluent discharge and sand residues. With the impotent establishment of radiation protection in the industry, plus the country newly introduced long-term plan to revive tin mining as well as its accessory amang mineral, it is necessary for the government to harmonize current regulation to improve the worker safety and health as well as sustaining local environment.
Matched MeSH terms: Air Pollutants, Radioactive/analysis*
Measurements of external radiation level, radon/thoron daughters concentrations in air and uranium/thorium concentrations in airborne mineral dust at 16 amang plants in Malaysia were carried out for three consecutive months to assess radiation dose to workers. Estimated occupational dose was within the range of 1.7-10.9 mSv y(-1). The mean total dose at the amang plants was 4.1 mSv y(-1). Overall, it was found that the major dose contribution of 80% came from external radiation. Radon/thoron daughters and airborne mineral dust contributed to only 11 and 9% of the total dose, respectively.
Matched MeSH terms: Air Pollutants, Radioactive/analysis
The processing of amang (one of a number of tin-tailing products) for its valuable minerals has associated with the radiological and environmental problems. The processing and stockpiling of amang and ilmenite in open-air spaces, subject as it is to environmental influences, gives rise to a potential for affecting residents in adjacent area. A case study was carried out in a residential area neighbouring a typical amang plant to investigate the radiological impact to the residents. The average Effective Dose rates, calculated based on the contributions of Effective Dose rates from inhaled suspended radioactive dust, radon-thoron and their progeny, and external gamma radiation, were determined for selected houses. Results show that the occupants of those houses received Effective Dose rate, which cannot be differentiated from background. The major contributor to the average Effective Dose rate came from external radiation sources. Inhaled radon and its progeny was the second major contributor.
Matched MeSH terms: Air Pollutants, Radioactive/analysis
Processing of by-product heavy minerals (amang) from tin mining involves potential exposure to external and internal sources of radioactivity. The radioactivity arises through the presence of thorium and uranium series radionuclides in the various minerals. Monazite is the most radioactive mineral, containing 3% to 7% thorium by weight, while ilmenite is generally the least radioactive mineral containing typically less than 0.05% thorium. External exposure occurs when workers are in close proximity to accumulations or stockpiles of the radioactive minerals, whereas internal exposure occurs when workers are involved in dusty processes. This paper summarizes the nature of the amang industry in South East Asia and presents the results of preliminary measurements of external radiation and airborne radioactivity in twelve Malaysian and Thai plants. Although constrained by a paucity of exposure data, it is concluded that radiation doses to some amang plant workers may approach or exceed international standards and that appropriate control measures are required as a matter of priority, Radiation doses may approach or exceed 100 mSv in situations where workers are exposed to excessive levels of ambient dust and no protective measures are used. Observations and recommendations are made relating to monitoring and surveillance, instruction and training, and engineering and administrative protection measures.
Matched MeSH terms: Air Pollutants, Radioactive/analysis