Displaying all 3 publications

Abstract:
Sort:
  1. Gundamaraju R, Hwi KK, Singla RK, Vemuri RC, Mulapalli SB
    Pharmacognosy Res, 2014 Oct;6(4):267-73.
    PMID: 25276061 DOI: 10.4103/0974-8490.138237
    The plant Albizia amara (Roxb.) Boiv. bark was used in traditional medical practices of India to treat cardiovascular diseases. Hyperlipidemia is the greatest risk factor of coronary heart disease.
    Matched MeSH terms: Albizzia
  2. Goh Yong Meng, Mahdi Ebrahimi, Nurmawati Syakroni, Mohammad Fasakh Jahroumi, Tarlan Jaafarpour, Azmah Saat
    MyJurnal
    Introduction: This study examined the antioxidant activity and phenolic, flavonoid and saponin contents from mul-tiple solvent extracts of Albizia myriophylla (ABZ) bark. Antioxidant activity of the methanol extract and its derived fractions namely hexane, chloroform, ethyl acetate, butanol and a residual aqueous fraction of the bark of ABZ was assessed. Methods: All the extracts showed a significant presence of phenolic, flavonoids and saponins. In DPPH (1, 1-diphenyl-2-picrylhidrazyl) radical scavenging test, ABTS (2-2’-azinobis 3-ethyl-6-sulfonic acid) radical scavenging test and reducing activity on ferrous iron (FRAP) test, the total antioxidant capacity was found to be varied in different fractions. Results: The IC50 calculated value of the three assays showed that the methanolic extract of ABZ bark had the lowest IC50 value for each assay, compared to the other extracts signifying highest anti-oxidant activity. Methan-olic extract of ABZ was tested in high-fat diet induced mice, which showed reduce adipocyte cellularity and reduces the cholesterol, triglyceride, LDL level while increasing the HDL level. Conclusion: The antioxidant capacity with probable free radical scavenging activity of the methanolic extract of ABZ may be useful for the treatment of chronic inflammatory-related metabolic diseases such as obesity.
    Matched MeSH terms: Albizzia
  3. Yu L, Lu M, Zhang W, Alarfaj AA, Hirad AH, Zhang H
    Microb Pathog, 2020 Apr;141:103960.
    PMID: 31953224 DOI: 10.1016/j.micpath.2019.103960
    BACKGROUND: Mycoplasma pneumoniae (MP) is a common cause of community-acquired pneumonia (CAP) among the children and adults that results upper and lower respiratory tract infections.

    OBJECTIVE: This study was aimed to inspect the ameliorative action of A. chinensis synthesized ZnONPs against M. pneumoniae infected pneumonia mice model.

    MATERIALS AND METHODS: ZnO NPs was synthesized from Albizia chinensis bark extract and characterized by UV-Vis spectroscopy, Fourier Transform Infrared (FTIR), Transmission Electron Microscopy (TEM), energy dispersive X-ray (EDX) and atomic force microscope (AFM) analyses. The antibacterial effectual of synthesized ZnONPs were examined against clinical pathogens. The pneumonia was induced to BALB/c mice via injecting the M. pneumoniae and treated with synthesized ZnONPs, followed by the total protein content, total cell counts and inflammatory mediators level was assessed in the BALF of experimental animals. The Histopathological investigation was done in the lung tissues of test animals.

    RESULTS: The outcomes of this work revealed that the formulated ZnONPs was quasi-spherical, radial and cylindrical; the size was identified as 116.5 ± 27.45 nm in diameter. The in vitro antimicrobial potential of formulated ZnO-NPs displayed noticeable inhibitory capacity against the tested fungal and bacterial strains. The administration of synthesized ZnO-NPs in MP infected mice model has significantly reduced the levels of total protein, inflammatory cells, inflammatory cytokines such as IL-1, IL-6, IL-8, tumour necrosis factor-alpha (TNF-a) and transforming growth factor (TGF). Besides, the histopathological examination of MP infected mice lung tissue showed the cellular arrangements were effectively retained after administration of synthesized ZnO-NPs.

    CONCLUSION: In conclusion, synthesized ZnO-NPs alleviate pneumonia progression via reducing the level of inflammatory cytokines and inflammatory cells in MP infected mice model.

    Matched MeSH terms: Albizzia/chemistry*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links