Displaying all 3 publications

Abstract:
Sort:
  1. Spulber S, Kilian P, Wan Ibrahim WN, Onishchenko N, Ulhaq M, Norrgren L, et al.
    PLoS One, 2014;9(4):e94227.
    PMID: 24740186 DOI: 10.1371/journal.pone.0094227
    Perfluorooctane sulfonate (PFOS) is a widely spread environmental contaminant. It accumulates in the brain and has potential neurotoxic effects. The exposure to PFOS has been associated with higher impulsivity and increased ADHD prevalence. We investigated the effects of developmental exposure to PFOS in zebrafish larvae, focusing on the modulation of activity by the dopaminergic system. We exposed zebrafish embryos to 0.1 or 1 mg/L PFOS (0.186 or 1.858 µM, respectively) and assessed swimming activity at 6 dpf. We analyzed the structure of spontaneous activity, the hyperactivity and the habituation during a brief dark period (visual motor response), and the vibrational startle response. The findings in zebrafish larvae were compared with historical data from 3 months old male mice exposed to 0.3 or 3 mg/kg/day PFOS throughout gestation. Finally, we investigated the effects of dexamfetamine on the alterations in spontaneous activity and startle response in zebrafish larvae. We found that zebrafish larvae exposed to 0.1 mg/L PFOS habituate faster than controls during a dark pulse, while the larvae exposed to 1 mg/L PFOS display a disorganized pattern of spontaneous activity and persistent hyperactivity. Similarly, mice exposed to 0.3 mg/kg/day PFOS habituated faster than controls to a new environment, while mice exposed to 3 mg/kg/day PFOS displayed more intense and disorganized spontaneous activity. Dexamfetamine partly corrected the hyperactive phenotype in zebrafish larvae. In conclusion, developmental exposure to PFOS in zebrafish induces spontaneous hyperactivity mediated by a dopaminergic deficit, which can be partially reversed by dexamfetamine in zebrafish larvae.
    Matched MeSH terms: Alkanesulfonic Acids/toxicity*
  2. Suja F, Pramanik BK, Zain SM
    Water Sci Technol, 2009;60(6):1533-44.
    PMID: 19759456 DOI: 10.2166/wst.2009.504
    Perfluorinated compounds such as perfluorooctane sulfonate (PFOS) and perfluorooctane acid (PFOA) have been recognized as emerging environmental pollutants because of their ubiquitous occurrence in the environment, biota and humans. The paper focuses on the distribution, bioaccumulation and toxic effects of PFOS and PFOA in the water. From the available literature, tap and surface water samples in several countries were found to be contaminated with PFOS and PFOA. These compounds were detected globally in the tissues of fish, bird and marine mammals. Their concentrations from relatively more industrialized areas were greater than those from the less populated and remote locations. Blood samples of occupationally exposed people and the general population in various countries were found to contain PFOS and PFOA which suggested a possibility of atmospheric transport of these compounds. There is still a death of information about the environmental pathways of PFOS and PFOA. The presence of these compounds in the tap water, surface water and animal and human tissues indicates their global contamination and bioaccumulative phenomena in the ecosystems.
    Matched MeSH terms: Alkanesulfonic Acids/toxicity*
  3. Sakai N, Shirasaka J, Matsui Y, Ramli MR, Yoshida K, Ali Mohd M, et al.
    Chemosphere, 2017 Apr;172:234-241.
    PMID: 28081507 DOI: 10.1016/j.chemosphere.2016.12.139
    Five homologs (C10-C14) of linear alkylbenzene sulfonate (LAS) were quantitated in surface water collected in the Langat and Selangor River basins using liquid chromatography-tandem mass spectrometry (LC-MS/MS). A geographic information system (GIS) was used to spatially analyze the occurrence of LAS in both river basins, and the LAS contamination associated with the population was elucidated by spatial analysis at a sub-basin level. The LAS concentrations in the dissolved phase (<0.45 μm) and 4 fractions separated by particle size (<0.1 μm, 0.1-1 μm, 1-11 μm and >11 μm) were analyzed to elucidate the environmental fate of LAS in the study area. The environmental risks of the observed LAS concentration were assessed based on predicted no effect concentration (PNEC) normalized by a quantitative structure-activity relationship model. The LAS contamination mainly occurred from a few populated sub-basins, and it was correlated with the population density and ammonia nitrogen. The dissolved phase was less than 20% in high contamination sites (>1000 μg/L), whereas it was more than 60% in less contaminated sites (<100 μg/L). The environmental fate of LAS in the study area was primarily subject to the adsorption to suspended solids rather than biodegradation because the LAS homologs, particularly in longer alkyl chain lengths, were considerably absorbed to the large size fraction (>11 μm) that settled in a few hours. The observed LAS concentrations exceeded the normalized PNEC at 3 sites, and environmental risk areas and susceptible areas to the LAS contamination were spatially identified based on their catchment areas.
    Matched MeSH terms: Alkanesulfonic Acids/toxicity
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links