A highly convenient method has been developed for the synthesis of (prop-2-ynyloxy) benzene and its derivatives. Differently substituted phenol and aniline derivatives were allowed to react with propargyl bromide in the presence of K2CO3 base and acetone as solvent. The compounds were synthesized in good yields (53-85%). Low cost, high yields and easy availability of compounds helped in the synthesis. Electron withdrawing groups favor the formation of stable phenoxide ion thus in turn favors the formation of product while electron donating groups do not favor the reaction. Phenol derivatives gave good yields as compared to that of aniline. As aprotic polar solvents favor SN2 type reactions so acetone provided best solvation for the reactions. K2CO3 was proved to be good for the synthesis. Antibacterial, Antiurease and NO scavenging activity of synthesized compounds were also examined. 4-bromo-2-chloro-1-(prop-2-ynyloxy)benzene 2a was found most active compound against urease enzyme with a percentage inhibition of 82.00±0.09 at 100 µg/mL with IC50 value of 60.2. 2-bromo-4-methyl-1-(prop-2-ynyloxy)benzene 2d was found potent antibacterial against Bacillus subtillus showing excellent inhibitory action with percentage inhibition of 55.67±0.26 at 100 µg/ml wih IC50 value of 79.9. Based on results, it can be concluded that some of the synthesized compounds may have potential antiurease and antibacterial effects against several harmful substances.
The marine soft corals Sarcophyton trocheliophorum crude extracts possessed antimicrobial activity towards pathogenic bacterial strains, i.e. Bacillus cereus, Salmonella typhi, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. Bioassay-guided fractionation indicated that the antimicrobial effect was due to the presence of terpenoid bioactive derivatives. Further biological assays of the n-hexane fractions were carried out using turbidity assay, inhibition zone assay and minimum inhibitory concentration for investigating the growth-inhibition effect towards the Gram-positive and Gram-negative bacteria. The fractions were screened and the structure of the isolated compound was justified by interpretation of the spectroscopic data, mainly mass spectrometry (GC-MS). The structure was assigned as (5S)-3-[(3E,5S)-5-hydroxy-3-hepten-6-yn-1-yl]-5-methyl-2(5H)-furanone and was effective at concentrations as low as 0.20 mg/mL. The above findings, in the course of our ongoing research on marine products, may implicate that the profound anti-microbial activity of the S. trocheliophorum soft corals, inhabiting the red sea reefs, is attributed to the presence of growth-inhibiting secondary metabolites mainly terpenoids.
Lipopolysaccharide (LPS) induces apoptosis in murine macrophages through the autocrine secretion of tumor necrosis factor (TNF)-α and nitric oxide (NO). LPS-induced inflammation in murine macrophages is associated with hydrogen sulfide (H2S) production. In this present study, we reported the novel role of H2S in LPS-induced apoptosis and its underlying molecular mechanism specifically at late phases in murine macrophage cells. Stimulation of RAW 264.7 macrophages with LPS resulted in a time- and dose-dependent induction of apoptosis. We observed that the LPS-induced early apoptosis (associated with TNF-α secretion) in macrophages was not inhibited in the presence of H2S inhibitor (DL-propargylglycine), whereas early apoptosis was absent in the presence of TNF receptor antibody. Interestingly, LPS-induced late apoptosis paralleled with H2S production was reduced in the presence of H2S inhibitor but not with TNF receptor antibody. The late apoptotic events mediated by H2S and not the TNF-α induced early apoptosis correlated significantly with the induction of p53 and Bax expression in LPS-induced macrophages. Thus, it is possible that RAW 264.7 murine macrophages treated with LPS mediated early apoptosis through TNF-α and the late apoptotic events through the production of H2S.