METHODS: In this prospective observational study, we measured BCAAs in fasting serum samples collected at inception from 2139 T2D patients free of cardiovascular-renal diseases. The study outcome was the first hospitalization for HF.
RESULTS: During 29 103 person-years of follow-up, 115 primary events occurred (age: 54.8 ± 11.2 years, 48.2% men, median [interquartile range] diabetes duration: 5 years [1-10]). Patients with incident HF had 5.6% higher serum BCAAs than those without HF (median 639.3 [561.3-756.3] vs 605.2 [524.8-708.7] μmol/L; P = .01). Serum BCAAs had a positive linear association with incident HF (per-SD increase in logarithmically transformed BCAAs: hazard ratio [HR] 1.22 [95% CI 1.07-1.39]), adjusting for age, sex, and diabetes duration. The HR remained significant after sequential adjustment of risk factors including incident coronary heart disease (1.24, 1.09-1.41); blood pressure, low-density lipoprotein cholesterol, and baseline use of related medications (1.31, 1.14-1.50); HbA1c , waist circumference, triglyceride, and baseline use of related medications (1.28, 1.11-1.48); albuminuria and estimated glomerular filtration rate (1.28, 1.11-1.48). The competing risk of death analyses showed similar results.
CONCLUSIONS: Circulating levels of BCAAs are independently associated with incident HF in patients with T2D. Prospective cohort analysis and randomized trials are needed to evaluate the long-term safety and efficacy of using different interventions to optimize BCAAs levels in these patients.
DESIGN: Randomised double-blind counterbalanced crossover.
METHODS: Eighteen recreationally active men (mean±SD; age: 24.7±4.8 years old; body-weight, BW: 67.1±6.1kg; height: 171.7±4.9cm) performed a cycling time-trial on an electromagnetically-braked cycle ergometer. Participants were instructed to complete the individualised total work in the shortest time possible, while ingesting either BCAAs (pre-exercise: 0.084gkg-1 BW; during exercise: 0.056gkg-1h-1) or a non-caloric placebo solution. Rating of perceived exertion, power, cadence and heart rate were recorded throughout, while maximal voluntary contraction, muscle voluntary activation level and electrically evoked torque using single and doublet stimulations were assessed at baseline, immediately post-exercise and 20-min post-exercise.
RESULTS: Supplementation with BCAA reduced (287.9±549.7s; p=0.04) time-to-completion and ratings of perceived exertion (p≤0.01), while concomitantly increasing heart rate (p=0.02). There were no between-group differences (BCAA vs placebo) in any of the neuromuscular parameters, but significant decreases (All p≤0.01) in maximal voluntary contraction, muscle voluntary activation level and electrically evoked torque (single and doublet stimulations) were recorded immediately following the trial, and these did not recover to pre-exercise values by the 20min recovery time-point.
CONCLUSIONS: Compared to a non-caloric placebo, acute BCAA supplementation significantly improved performance in cycling time-trial among recreationally active individuals without any notable changes in either central or peripheral factors. This improved performance with acute BCAA supplementation was associated with a reduced rating of perceived exertion.