The aim of the study was to ascertain if there was any difference in the levels of prorenin and active renin between pre-eclamptic and normotensive feto-placental tissues.
Amniotic membrane has the potential to be used as scaffold in various tissue engineering applications. However, increasing its biostability at the same time maintaining its biocompatibility is important to enhance its usage as a scaffold. This studied characteristics genipin-crosslinked amniotic membrane as a bioscaffold. Redundant human amniotic membranes (HAM) divided into native (nAM), decellularized (dAM) and genipin-crosslinked (clAM) groups. The dAM and clAM group were decellularized using thermolysin (TL) and sodium hydroxide (NaOH) solution. Next, clAM group was crosslinked with 0.5% and 1.0% (w/v) genipin. The HAM was then studied for in vitro degradation, percentage of swelling, optical clarity, ultrastructure and mechanical strength. Meanwhile, fibroblasts isolated from nasal turbinates were then seeded onto nAM, dAM and clAM for biocompatibility studies. clAM had the slowest degradation rate and were still morphologically intact after 30 days of incubation in 0.01% collagenase type 1 solution. The dAM had a significantly highest percentage of swelling than other groups (p
Previously, it was reported that human amniotic membrane (AM) induced stem cells from human deciduous exfoliated teeth (SHED) endothelial-like-cell differentiation. This interesting effect of AM matrix on SHED demands further elucidation. Objective of this in vitro work was to study the effect of 24-h VEGF induced on SHED endothelial differentiation when seeded on acellular stromal side (SS) of AM matrix. Stemness of SHED was identified by flow cytometry. Cell attachment and morphological changes towards the matrix was observed by scanning electron microscopy. Protein expression of endothelial marker was examined by Western blot. The expression of stem cells and endothelial-specific gene markers of VEGF-induced SHED cultured on human AM was inspected via reverse transcriptase-polymerase chain reaction. Results showed SHED at both passages retain stemness property. Ang-1 protein was expressed in SHED. Cells treated with VEGF and cultured on AM transformed attached well to AM. VEGF-induced SHED expressed both stem cell and endothelial-specific markers throughout the treatments and timeline. Interestingly, prolonged VEGF treatment increased the expression of Cox-2 and VE-Cadherin genes in all treated groups when compared to SHED. It was concluded that the VEGF-induced SHED showed better expression of endothelial-specific markers when cultured on SS of AM, with prolonged VEGF treatment.