Alpha-asarone is one of the bioactive phytochemicals present in the rhizomes of Acorus species and demonstrated its anticonvulsant activity in rodents. Alpha-asarone protected mice from the gamma-aminobutyric acid (GABA) type A receptor antagonist or N-methyl-d-aspartate (NMDA) receptor agonist-induced seizures. In our recent study, α-asarone attenuated the nicotine withdrawal-induced depression-like behavior in mice. The seizures induced by nicotine is mediated through the activation of nicotinic acetylcholine receptors (nAChRs) and stimulation of NMDA receptors. Therefore, we hypothesized that α-asarone might be effective against nicotine-induced seizures. Also, the interaction of α-asarone with nAChRs is unknown. In this study, we investigated the effect of α-asarone on the locomotor activity and body temperature in mice. In addition, we studied the effect of α-asarone on nicotine-induced seizures in mice. Finally, we assessed in vivo pharmacodynamic interaction of α-asarone with nAChRs using nicotine-induced hypomotility and hypothermia tests in mice. The results of this study showed that the α-asarone (50-200 mg/kg, i.p.) and diazepam (5 mg/kg, i.p.) treatment significantly decreased the locomotor activity and body temperature in mice. Furthermore, α-asarone (50-200 mg/kg, i.p.) and diazepam (5 mg/kg, i.p.) pretreatment significantly prolonged the onset time of nicotine-induced seizures in mice. However, α-asarone (30 and 50 mg/kg, i.p.) pretreatment did not inhibit the nicotine-induced hypomotility or hypothermia in mice. Conversely, mecamylamine (1 mg/kg, s.c.) pretreatment completely blocked the nicotine-induced seizures and significantly prevents the nicotine-induced hypomotility and hypothermia in mice. Overall, these results suggest that the protective effect of α-asarone against nicotine-induced seizures did not mediate through the antagonism of nAChRs. We also postulated that the GABAergic and glutamatergic activities of α-asarone could be involved in its protective effect against nicotine-induced seizures and based on this aspect further studies are required.
In the present study, the effect α-asarone on nicotine withdrawal-induced depression-like behavior in mice was investigated. In this study, mice were exposed to drinking water or nicotine solution (10-200µg/ml) as a source of drinking for forty days. During this period, daily fluid consumption, food intake and body weight were recorded. The serum cotinine level was estimated before nicotine withdrawal. Naïve mice or nicotine-withdrawn mice were treated with α-asarone (5, 10 and 20mg/kg, i.p.) or bupropion (10mg/kg, i.p.) for eight consecutive days and the forced swim test (FST) or locomotor activity test was conducted. In addition, the effect of α-asarone or bupropion on the hippocampal pCREB, CREB and BDNF levels during nicotine-withdrawal were measured. Results indicated that α-asarone (5, 10 and 20mg/kg, i.p.) or bupropion (10mg/kg, i.p.) pretreatment did not significantly alter the immobility time in the FST or spontaneous locomotor activity in naïve mice. However, the immobility time of nicotine-withdrawn mice was significantly attenuated with α-asarone (5, 10 and 20mg/kg, i.p.) or bupropion (10mg/kg, i.p.) pretreatment in the FST. Besides, α-asarone (5, 10 and 20mg/kg, i.p.) or bupropion (10mg/kg, i.p.) pretreatment significantly attenuated the hippocampal pCREB levels in nicotine-withdrawn mice. Overall, the present results indicate that α-asarone treatment attenuated the depression-like behavior through the modulation of hippocampal pCREB levels during nicotine-withdrawal in mice.