Displaying all 4 publications

Abstract:
Sort:
  1. Gorajana A, Ying CC, Shuang Y, Fong P, Tan Z, Gupta J, et al.
    Curr Drug Deliv, 2013 Jun;10(3):309-16.
    PMID: 23360246
    Dapivirine, formerly known as TMC 120, is a poorly-water soluble anti-HIV drug, currently being developed as a vaginal microbicide. The clinical use of this drug has been limited due to its poor solubility. The aim of this study was to design solid dispersion systems of Dapivirine to improve its solubility. Solid dispersions were prepared by solvent and fusion methods. Dapivirine release from the solid dispersion system was determined by conducting in-vitro dissolution studies. The physicochemical characteristics of the drug and its formulation were studied using Differential Scanning Calorimetry (DSC), powder X-ray Diffraction (XRD), Fourier-transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). A significant improvement in drug dissolution rate was observed with the solid dispersion systems. XRD, SEM and DSC results indicated the transformation of pure Dapivirine which exists in crystalline form into an amorphous form in selected solid dispersion formulations. FTIR and HPLC analysis confirmed the absence of drug-excipient interactions. Solid dispersion systems can be used to improve the dissolution rate of Dapivirine. This improvement could be attributed to the reduction or absence of drug crystallinity, existence of drug particles in an amorphous form and improved wettability of the drug.
    Matched MeSH terms: Anti-HIV Agents/chemistry*
  2. De Clercq E
    Med Res Rev, 2000 Sep;20(5):323-49.
    PMID: 10934347
    A large variety of natural products have been described as anti-HIV agents, and for a portion thereof the target of interaction has been identified. Cyanovirin-N, a 11-kDa protein from Cyanobacterium (blue-green alga) irreversibly inactivates HIV and also aborts cell-to-cell fusion and transmission of HIV, due to its high-affinity interaction with gp120. Various sulfated polysaccharides extracted from seaweeds (i.e., Nothogenia fastigiata, Aghardhiella tenera) inhibit the virus adsorption process. Ingenol derivatives may inhibit virus adsorption at least in part through down-regulation of CD4 molecules on the host cells. Inhibition of virus adsorption by flavanoids such as (-)epicatechin and its 3-O-gallate has been attributed to an irreversible interaction with gp120 (although these compounds are also known as reverse transcriptase inhibitors). For the triterpene glycyrrhizin (extracted from the licorice root Glycyrrhiza radix) the mode of anti-HIV action may at least in part be attributed to interference with virus-cell binding. The mannose-specific plant lectins from Galanthus, Hippeastrum, Narcissus, Epipac tis helleborine, and Listera ovata, and the N-acetylgl ucosamine-specific lectin from Urtica dioica would primarily be targeted at the virus-cell fusion process. Various other natural products seem to qualify as HIV-cell fusion inhibitors: the siamycins [siamycin I (BMY-29304), siamycin II (RP 71955, BMY 29303), and NP-06 (FR901724)] which are tricyclic 21-amino-acid peptides isolated from Streptomyces spp that differ from one another only at position 4 or 17 (valine or isoleucine in each case); the betulinic acid derivative RPR 103611, and the peptides tachyplesin and polyphemusin which are highly abundant in hemocyte debris of the horseshoe crabs Tachypleus tridentatus and Limulus polyphemus, i.e., the 18-amino-acid peptide T22 from which T134 has been derived. Both T22 and T134 have been shown to block T-tropic X4 HIV-1 strains through a specific antagonism with the HIV corecept or CXCR4. A number of natural products have been reported to interact with the reverse transcriptase, i.e., baicalin, avarol, avarone, psychotrine, phloroglucinol derivatives, and, in particular, calanolides (from the tropical rainforest tree, Calophyllum lanigerum) and inophyllums (from the Malaysian tree, Calophyllum inophyllum). The natural marine substance illimaquinone would be targeted at the RNase H function of the reverse transcriptase. Curcumin (diferuloylmethane, from turmeric, the roots/rhizomes of Curcuma spp), dicaffeoylquinic and dicaffeoylt artaric acids, L-chicoric acid, and a number of fungal metabolites (equisetin, phomasetin, oteromycin, and integric acid) have all been proposed as HIV-1 integrase inhibitors. Yet, we have recently shown that L-c hicoric acid owes its anti-HIV activity to a specific interaction with the viral envelope gp120 rather than integrase. A number of compounds would be able to inhibit HIV-1 gene expression at the transcription level: the flavonoid chrysin (through inhibition of casein kinase II, the antibacter ial peptides melittin (from bee venom) and cecropin, and EM2487, a novel substance produced by Streptomyces. (ABSTRACT TRUNCATED)
    Matched MeSH terms: Anti-HIV Agents/chemistry
  3. Gill MSA, Hassan SS, Ahemad N
    Eur J Med Chem, 2019 Oct 01;179:423-448.
    PMID: 31265935 DOI: 10.1016/j.ejmech.2019.06.058
    HIV infection is a major challenge to mankind and a definitive cure or a viable vaccine for HIV is still elusive. HIV-1 is constantly evolving and developing resistant against clinically used anti-HIV drugs thus posing serious hurdles in the treatment of HIV infection. This prompts the need to developed new anti-HIV drugs; preferentially adopting intelligent ways to counteract an evolving virus. Highly Active Anti-Retroviral Therapy (HAART): a strategy involving multiple targeting through various drugs has proven beneficial in the management of AIDS. However, it is a complex regimen with high drug load, increased risk of drug interactions and adverse effects, which lead to poor patient compliance. Reverse transcriptase (RT) and Integrase (IN) are two pivotal enzymes in HIV-1 lifecycle with high structural and functional analogy to be perceived as drug-able targets for novel dual-purpose inhibitors. Designed multi-functional ligand (DML) is a modern strategy by which multiple targets can be exploited using a single chemical entity. A single chemical entity acting on multiple targets can be much more effective than a complex multi-drug regimen. The development of such multifunctional ligands is highly valued in anti-HIV drug discovery with the proposed advantage of being able to stop two or more stages of viral replication cycle. This review will encompass the evolution of the RT-IN dual inhibitory scaffolds reported so far and the contribution made by the leading research groups over the years in this field.
    Matched MeSH terms: Anti-HIV Agents/chemistry
  4. Kharkwal H, Kumar BK, Murugesan S, Singhvi G, Avasthi P, Goyal A, et al.
    Future Med Chem, 2021 02;13(3):269-286.
    PMID: 33399497 DOI: 10.4155/fmc-2020-0257
    Reverse transcriptase and integrase are key enzymes that play a pivotal role in HIV-1 viral maturation and replication. Reverse transcriptase consists of two active sites: RNA-dependent DNA polymerase and RNase H. The catalytic domains of integrase and RNase H share striking similarity, comprising two aspartates and one glutamate residue, also known as the catalytic DDE triad, and a Mg2+ pair. The simultaneous inhibition of reverse transcriptase and integrase can be a rational drug discovery approach for combating the emerging drug resistance problem. In the present review, the dual inhibition of RNase H and integrase is systematically discussed, including rationality of design, journey of development, advancement and future perspective.
    Matched MeSH terms: Anti-HIV Agents/chemistry*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links