METHODS: We systematically searched five electronic databases (PubMed, CENTRAL, Embase, Global Health, and PsycINFO) from date of inception to September 30, 2022, for studies reporting on the effect of bebtelovimab in SARS-CoV-2 infection, using a combination of search terms around -bebtelovimab‖, -LY-CoV1404‖, -LY3853113‖, and -coronavirus infection‖. All citations were screened independently by two researchers. Data were extracted and thematically analyzed based on study design by adhering to the stipulated scoping review approaches.
RESULTS: Thirty-nine studies were included, thirty-four non-clinical studies were narratively synthesized, and five clinical studies were meta-analyzed. The non-clinical studies revealed bebtelovimab not only potently neutralized wide-type SARS-CoV-2 and existing variants of concern such as B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma), and B.1.617.2 (Delta), but also retained appreciable activity against Omicron lineages, including BA.2.75, BA.4, BA.4.6, and BA.5. Unlike other monoclonal antibodies, bebtelovimab was able to bind to epitope of the SARS-CoV-2 S protein by exploiting loop mobility or by minimizing side-chain interactions. Pooled analysis from clinical studies depicted that the rates of hospitalization, ICU admission, and death were similar between bebtelovimab and other COVID-19 therapies. Bebtelovimab was associated with a low incidence of treatment-emergent adverse events.
CONCLUSION: Preclinical evidence suggests bebtelovimab be a potential treatment for COVID-19 amidst viral evolution. Bebtelovimab has comparable efficacy to other COVID-19 therapies without evident safety concerns.
METHODS: A systematic literature search with no language restriction was performed in electronic databases and preprint repositories to identify eligible studies published up to 29 June 2021. The outcomes of interest were hospital admission and all-cause mortality. A random-effects model was used to estimate the pooled odds ratio (OR) for outcomes of interest with the use of neutralizing monoclonal antibodies relative to nonuse of neutralizing monoclonal antibodies, at 95% confidence intervals (CI).
RESULTS: Our systematic literature search identified nine randomized controlled trials. Three trials had an overall low risk of bias, while four trials had some concerns in the overall risk of bias. The meta-analysis revealed no statistically significant difference in the odds of mortality (pooled OR = 0.69; 95% CI 0.33-1.47), but a statistically significant reduction in the odds of hospital admission (pooled OR = 0.29; 95% CI 0.21-0.42), with the administration of a neutralizing monoclonal antibody among patients with COVID-19, relative to non-administration of a neutralizing monoclonal antibody, at the current sample size.
CONCLUSION: The reduced risk of hospital admission with neutralizing monoclonal antibodies use suggests that the timing of neutralizing antibodies administration is key in preventing hospital admission and, ultimately, death. Future randomized trials should aim to determine if the clinical outcomes with neutralizing monoclonal antibodies differ based on serostatus.
SIGNIFICANCE: A shotgun proteomic approach adopted in this study revealed the compositional details of the venom of common tiger snake from Australia, Notechis scutatus. The proteomic findings provided additional information on the relative abundances of toxins and the detection of proteins of minor expression unreported previously. The potent lethal effect of the venom was neutralized by bioCSL Sea Snake Antivenom, an anticipated finding due to the fact that the Sea Snake Antivenom is actually bivalent in nature, being raised against a mix of venoms of the beaked sea snake (Hydrophis schistosus) and N. scutatus. However, it is surprising to note that bioCSL Sea Snake Antivenom neutralized N. scutatus venom much more effectively compared to the targeted sea snake venom by a marked difference in potency of approximately 6-fold. This phenomenon may be explained by the main difference in the proteomes of the two venoms, where H. schistosus venom is dominated by short-neurotoxins in high abundance - this is a poorly immunogenic toxin group that has been increasingly recognized in the venoms of a few cobras. Further investigations should be directed toward strategies to improve the neutralization of short-neurotoxins, in line with the envisioned production of an effective pan-regional elapid antivenom.