Displaying all 4 publications

Abstract:
Sort:
  1. Yeo CC, Abu Bakar F, Chan WT, Espinosa M, Harikrishna JA
    Toxins (Basel), 2016 Feb 19;8(2):49.
    PMID: 26907343 DOI: 10.3390/toxins8020049
    Toxin-antitoxin (TA) systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies.
    Matched MeSH terms: Antitoxins/genetics*
  2. Ghafourian S, Good L, Sekawi Z, Hamat RA, Soheili S, Sadeghifard N, et al.
    Mem Inst Oswaldo Cruz, 2014 Jul;109(4):502-5.
    PMID: 25004148
    Although analysis of toxin-antitoxin (TA) systems can be instructive, to date, there is no information on the prevalence and identity of TA systems based on a large panel of Acinetobacter baumannii clinical isolates. The aim of the current study was to screen for functional TA systems among clinical isolates of A. baumannii and to identify the systems' locations. For this purpose, we screened 85 A. baumannii isolates collected from different clinical sources for the presence of the mazEF, relBE and higBA TA genes. The results revealed that the genes coding for the mazEF TA system were commonly present in all clinical isolates of A. baumannii. Reverse transcriptase-polymerase chain reaction analysis showed that transcripts were produced in the clinical isolates. Our findings showed that TA genes are prevalent, harboured by chromosomes and transcribed within A. baumannii. Hence, activation of the toxin proteins in the mazEF TA system should be investigated further as an effective antibacterial strategy against this bacterium.
    Matched MeSH terms: Antitoxins/genetics
  3. Soheili S, Ghafourian S, Sekawi Z, Neela VK, Sadeghifard N, Taherikalani M, et al.
    Drug Des Devel Ther, 2015;9:2553-61.
    PMID: 26005332 DOI: 10.2147/DDDT.S77263
    The toxin-antitoxin (TA) system is a regulatory system where two sets of genes encode the toxin and its corresponding antitoxin. In this study, the prevalence of TA systems in independently isolated clinical isolates of Enterococcus faecium and Enterococcus faecalis was determined, the dominant TA system was identified, different virulence genes in E. faecium and E. faecalis were surveyed, the level of expression of the virulence and TA genes in normal and stress conditions was determined, and finally their associations with the TA genes were defined. Remarkably, the analysis demonstrated higBA and mazEF in all clinical isolates, and their locations were on chromosomes and plasmids, respectively. On the other hand, a quantitative analysis of TA and virulence genes revealed that the expression level in both genes is different under normal and stress conditions. The results obtained by anti-mazF peptide nucleic acids demonstrated that the expression level of virulence genes had decreased. These findings demonstrate an association between TA systems and virulence factors. The mazEF on the plasmids and the higBA TA genes on the chromosomes of all E. faecium and E. faecalis strains were dominant. Additionally, there was a decrease in the expression of virulence genes in the presence of anti-mazF peptide nucleic acids. Therefore, it is suggested that mazEF TA systems are potent and sensitive targets in all E. faecium and E. faecalis strains.
    Matched MeSH terms: Antitoxins/genetics*
  4. Ghafourian S, Raftari M, Sadeghifard N, Sekawi Z
    Curr Issues Mol Biol, 2014;16:9-14.
    PMID: 23652423
    The toxin-antitoxin (TA) systems are systems in which an unstable antitoxin inhibits a stable toxin. This review aims to introduce the TA system and its biological application in bacteria. For this purpose, first we introduce a new classification for the TA systems based on how the antitoxin can neutralize the toxin, we then describe the functions of TA systems and finally review the application of these systems in biotechnology.
    Matched MeSH terms: Antitoxins/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links