Displaying publications 1 - 20 of 25 in total

  1. Woodcock P, Edwards DP, Newton RJ, Vun Khen C, Bottrell SH, Hamer KC
    PLoS One, 2013;8(4):e60756.
    PMID: 23593302 DOI: 10.1371/journal.pone.0060756
    Trophic organisation defines the flow of energy through ecosystems and is a key component of community structure. Widespread and intensifying anthropogenic disturbance threatens to disrupt trophic organisation by altering species composition and relative abundances and by driving shifts in the trophic ecology of species that persist in disturbed ecosystems. We examined how intensive disturbance caused by selective logging affects trophic organisation in the biodiversity hotspot of Sabah, Borneo. Using stable nitrogen isotopes, we quantified the positions in the food web of 159 leaf-litter ant species in unlogged and logged rainforest and tested four predictions: (i) there is a negative relationship between the trophic position of a species in unlogged forest and its change in abundance following logging, (ii) the trophic positions of species are altered by logging, (iii) disturbance alters the frequency distribution of trophic positions within the ant assemblage, and (iv) disturbance reduces food chain length. We found that ant abundance was 30% lower in logged forest than in unlogged forest but changes in abundance of individual species were not related to trophic position, providing no support for prediction (i). However, trophic positions of individual species were significantly higher in logged forest, supporting prediction (ii). Consequently, the frequency distribution of trophic positions differed significantly between unlogged and logged forest, supporting prediction (iii), and food chains were 0.2 trophic levels longer in logged forest, the opposite of prediction (iv). Our results demonstrate that disturbance can alter trophic organisation even without trophically-biased changes in community composition. Nonetheless, the absence of any reduction in food chain length in logged forest suggests that species-rich arthropod food webs do not experience trophic downgrading or a related collapse in trophic organisation despite the disturbance caused by logging. These food webs appear able to bend without breaking in the face of some forms of anthropogenic disturbance.
    Matched MeSH terms: Ants/physiology*
  2. Johnson CA, Lommelen E, Allard D, Gobin B
    Naturwissenschaften, 2003 Jul;90(7):332-6.
    PMID: 12883778
    Gnamptogenys menadensis is an arboreal nester that forages opportunistically almost exclusively on vegetation, sometimes recruiting others to participate in prey retrieval. The three-dimensional characteristics of vegetation suggest that functions describing recruitment decision thresholds or the pattern of recruitment in arboreal species may differ from those predicted by optimal foraging theory. To examine the effects of prey abundance and distance on the recruitment dynamics of G. menadensis, we baited nests with one termite, five termites or a number of termites between 20 and 40 either near to or far from the entrance and observed the ensuing behaviors. G. menadensis recruited others when encountering multiple termites regardless of the termite pile's distance from the nest, although a few individuals remained at the site and defended the resource. The pattern of arrivals at the site indicates that the majority and sometimes all arrivals were recruited from the branch trails. In combination, these results suggest that the architecture of the foraging habitat, which limits available return routes to the nest and thus increases encounter probabilities with potential recruits, shaped the process of information transfer and generated a collective pattern of foraging and prey retrieval.
    Matched MeSH terms: Ants/physiology*
  3. Ito F, Hashim R, Huei YS, Kaufmann E, Akino T, Billen J
    Naturwissenschaften, 2004 Oct;91(10):481-4.
    PMID: 15729761
    The mechanism by which palatable species take advantage of their similarity in appearance to those that are unpalatable, in order to avoid predation, is called Batesian mimicry. Several arthropods are thought to be Batesian mimics of social insects; however, social insects that are Batesian mimics among themselves are rare. In Malaysia we found a possible Batesian mimic in an arboreal ant species, Camponotus sp., which was exclusively observed on foraging trails of the myrmicine ant Crematogaster inflata. The bright yellow and black colouring pattern, as well as the walking behaviour, were very similar in both species. We observed general interactions between the two species, and tested their palatability and the significance of the remarkably similar visual colour patterns for predator avoidance. Prey offered to C. inflata was also eaten by Camponotus workers in spite of their being attacked by C. inflata, indicating that Camponotus sp. is a commensal of C. inflata. An experiment with chicks as potential predators suggests that Camponotus sp. is palatable whereas C. inflata is unpalatable. After tasting C. inflata, the chicks no longer attacked Camponotus sp., indicating that Camponotus sp. is a Batesian mimic of Crematogaster inflata.
    Matched MeSH terms: Ants/physiology*
  4. Maschwitz U, Moog J
    Naturwissenschaften, 2000 Dec;87(12):563-5.
    PMID: 11198200
    The behavioral response of the obligate bamboo-nesting ant Cataulacus muticus to nest flooding was studied in a perhumid tropical rainforest in Malaysia and in the laboratory. The hollow internodes of giant bamboo, in which C. muticus exclusively nests, are prone to flooding by heavy rains. The ants showed a two-graded response to flooding. During heavy rain workers block the nest entrances with their heads to reduce water influx. However, rainwater may still intrude into the nest chamber. The ants respond by drinking the water, leaving the nest and excreting water droplets on the outer stem surface. This cooperative 'peeing' behavior is a new survival mechanism adaptive to the ants' nesting ecology. Laboratory experiments conducted with two other Cataulacus species, C. catuvolcus colonizing small dead twigs and C. horridus inhabiting rotten wood, did not reveal any form of water-bailing behavior.
    Matched MeSH terms: Ants/physiology*
  5. Feldhaar H, Fiala B, bin Hashim R, Maschwitz U
    Naturwissenschaften, 2000 Sep;87(9):408-11.
    PMID: 11091965
    Matched MeSH terms: Ants/physiology*
  6. Gray REJ, Ewers RM, Boyle MJW, Chung AYC, Gill RJ
    Sci Rep, 2018 03 23;8(1):5131.
    PMID: 29572517 DOI: 10.1038/s41598-018-23272-y
    Understanding how anthropogenic disturbance influences patterns of community composition and the reinforcing interactive processes that structure communities is important to mitigate threats to biodiversity. Competition is considered a primary reinforcing process, yet little is known concerning disturbance effects on competitive interaction networks. We examined how differences in ant community composition between undisturbed and disturbed Bornean rainforest, is potentially reflected by changes in competitive interactions over a food resource. Comparing 10 primary forest sites to 10 in selectively-logged forest, we found higher genus richness and diversity in the primary forest, with 18.5% and 13.0% of genera endemic to primary and logged respectively. From 180 hours of filming bait cards, we assessed ant-ant interactions, finding that despite considered aggression over food sources, the majority of ant interactions were neutral. Proportion of competitive interactions at bait cards did not differ between forest type, however, the rate and per capita number of competitive interactions was significantly lower in logged forest. Furthermore, the majority of genera showed large changes in aggression-score with often inverse relationships to their occupancy rank. This provides evidence of a shuffled competitive network, and these unexpected changes in aggressive relationships could be considered a type of competitive network re-wiring after disturbance.
    Matched MeSH terms: Ants/physiology*
  7. Liu K, Mansor A, Ruppert N, Lee CY, Azman NM, Fadzly N
    Plant signaling & behavior, 2019;14(8):1621245.
    PMID: 31132922 DOI: 10.1080/15592324.2019.1621245
    Rattan is an important climbing palm taxon in Malaysian tropical rain forests. Many rattan species have unique structures directly associated with certain ant species. In this study, four rattan species (Daemonorops lewisiana, Calamus castaneus, Daemonorops geniculata and Korthalsia scortechinii) were inspected and documented in a field survey concerning their relationships with several ant species. We noticed that two rattan species (D. lewisiana and C. castaneus) were more likely to be associated with ants compared to their neighbouring rattan (Plectomia griffithii). However, D. lewisiana and C. castaneus did not directly provide shelters for ant colonies, but possessed unique structures: upward-pointing spines and funnel-shaped leaves, which are equipped to collect more litter than P. griffithii. To test our litter collecting hypothesis, we measured the inclination of spines from the stem. Our results showed the presence of ant colonies in the litter-collecting rattans (D. lewisiana and C. castaneus), which was significantly higher compared to a non-litter-collecting rattan (P. griffithii). We propose a complex and novel type of adaptation (litter-collection and provision of nesting materials) for rattans, which promotes interactions between the rattan and ants through the arrangements of leaves, leaflets, and spines. In return, the rattan may benefit from ants' services, such as protection, nutrient enhancement, and pollination.
    Matched MeSH terms: Ants/physiology*
  8. Heo CC, Mohamad AR, Rosli H, Nurul Ashikin A, Chen CD, John J, et al.
    Trop Biomed, 2009 Apr;26(1):106-9.
    PMID: 19696735
    An observational study was conducted in an oil palm plantation in Tanjung Sepat, Selangor, Malaysia on August until September 2007 to note the decomposition process of pigs and their related faunal succession. We collected six species of ants (Formicidae) from 3 subfamilies: Formicinae (Oecophylla smaragdina and Anoplolepis gracilipes), Myrmicinae (Tetramorium sp. and Pheidologeton sp.) and Ponerinae (Odontoponera sp. and Diacamma sp.) that were associated with pig carcasses placed on the ground. Oecophylla smaragdina, Pheidologeton sp. and Tetramorium sp. were found on a partially burnt pig carcass whereas the other species were recovered from unburned pig carcass. These ants predated on fly eggs, larvae, pupae and adults. Ants could be found at all stages of decomposition starting from fresh until dry stage. Predatory ants can reduce fly population and thus may affect the rate of carcass decomposition but this was not seen in our study. Even though O. smaragdina was seen at all stages of decomposition of the burnt pig, this did not alter much the decomposition process by fly larvae.
    Matched MeSH terms: Ants/physiology*
  9. Norasmah B, Abu Hassan A, Che Salmah MR, Nurita AT, Nur Aida H
    Trop Biomed, 2006 Dec;23(2):134-9.
    PMID: 17322814
    A field study on foraging activity and proteinacous food preference was performed on the tropical fire ant (Solenopsis geminata) (Fabricius) at the School of Biological Sciences and Desasiswa Bakti Permai, Universiti Sains Malaysia (USM), Penang. Foraging activity studies of 4 colonies of S. geminata were conducted in the field for 24 hours. Foraging activity significantly increased 4 hours before sunset and maximum foraging occurred at midnight until early morning. Three types of proteinacous food; anchovy, meat and egg yolk were tested among the five colonies of S. geminata in the field. The egg yolk was the most preferred food (100%) followed by meat (31%) and anchovy (15%).
    Matched MeSH terms: Ants/physiology*
  10. Loke PY, Lee CY
    J. Econ. Entomol., 2006 Feb;99(1):129-33.
    PMID: 16573333
    Monomorium orientale Mayr (Hymenoptera: Formicidae) is a common structure- and food-infesting ant in Asia. There is only limited information on the biology and habits of this species, especially on the preferred foods and distribution of nutrients in colonies. We conducted a laboratory study on the distribution of carbohydrates, proteins, and lipids, which were represented by respective food sources, in M. orientale colonies. Three colony conditions were applied: normal, with a balanced ratio of castes, queenless (only workers and brood), and broodless (only queens and workers). Food sources were stained to track the flow of the respective food in the colonies. Results revealed that carbohydrates had rapid distribution, with > 60% of the colony indicated in 24 h, in all colony conditions. Queens in all colonies did not feed on protein. Protein showed a more delayed distribution in the brood in all colony conditions; < 10% of the colony fed on protein by 24 h. Only queens in broodless colonies showed signs of feeding on lipid, with < 10% indicated in 24 h. Workers in all colonies fed on lipid as soon as it was delivered, whereas the brood only began to reveal feeding response after 24 h.
    Matched MeSH terms: Ants/physiology*
  11. Kaufmann E, Maschwitz U
    Naturwissenschaften, 2006 May;93(5):216-27.
    PMID: 16544124
    Ant-garden (AG) associations are systems of epiphytic plants and arboricolous (i.e., tree-living) ants, in which the ants build fragile carton nests containing organic material. They collect and incorporate seeds or fruits of epiphytes that then germinate and grow on the nest [sensu Corbara et al. (1999) 38:73-89]. The plant roots stabilize the nest carton. AGs have been well-known in the neotropics for more than 100 years. In contrast, reports on similar associations in the paleotropics are scarce so far. After discovering a first common AG system on giant bamboo [Kaufmann et al. (2001) 48:125-133], we started a large-scale survey for AGs in Peninsular Malaysia, Borneo, Java, and southern Thailand. A great variety of AG systems (altogether including 18 ant species and 51 plant species) was discovered and is described in the present paper. The high number of species participating in AG associations was reflected by a great variability in the specific appearances of the nest gardens. Frequently, further groups of organisms (e.g., hemipteran trophobionts, fungi) were also involved. Preference patterns of particular ant and epiphyte species for each other and for particular phorophytes (carrier trees) were detected. We integrate domatia-producing, so-called ant-house epiphytes in our study and compare their phases of establishment, as well as other characteristics, to "classical" AGs, coming to the conclusion that they should be regarded only as a special type of AG epiphyte and not as a separate ecological category.
    Matched MeSH terms: Ants/physiology*
  12. Tay JW, Lee CY
    J. Econ. Entomol., 2015 Jun;108(3):1237-42.
    PMID: 26470251 DOI: 10.1093/jee/tov079
    Budding and relocation of nests are important characteristics of the Pharaoh ant, Monomorium pharaonis (L.), an important pest of artificial structures. Pharaoh ant colony movements induced by several types of disturbances were evaluated in the laboratory. The percentages of workers and brood in the source and new nest sites were determined at Days 0, 1, 3, and 5 following physical disturbance (temporal removal of nestmates), chemical disturbance (application of pyrethroid insecticide), invasion by heterospecific ants, food depletion, and moisture depletion in the laboratory. All disturbances were performed in the source nest, which was connected to an empty new nest site. Almost all workers moved and carried the entire brood to the new nest site when subjected to physical disturbance, chemical disturbance, and ant invasion on Day 1, whereas only <5% of workers were present in the new nest site in the undisturbed control. After these disturbances, the brood was never relocated back to the original nest site in this 5-d study. When subjected to food depletion, ∼60% of the brood were found in the new nest site and ∼40% of the brood remained in the original nest on Day 5, resulting in a polydomous population. In contrast, moisture depletion did not show any significant effect on colony movement. These results provide useful information about the causes of Pharaoh ant colony budding and guidance about how to develop effective control and prevention strategies.
    Matched MeSH terms: Ants/physiology*
  13. Psomas E, Holdsworth S, Eggleton P
    J. Morphol., 2018 07;279(7):981-996.
    PMID: 29676002 DOI: 10.1002/jmor.20828
    Pselaphinae is a species-rich beetle subfamily found globally, with many exhibiting myrmecophily-a symbiotic association with ants. Pselaphine-ant associations vary from facultative to obligate, but direct behavioral observations still remain scarce. Pselaphines are speciose and ecologically abundant within tropical leaf litter invertebrate communities where ants dominate, implying a potentially important ecological role that may be affected by habitat disturbances that impact ants. In this study, we measured and analyzed putative functional traits of leaf litter pselaphines associated with myrmecophily through morphometric analysis. We calculated "myrmecophile functional diversity" of pselaphines at different sites and examined this measure's relationship with ant abundance, in both old growth and logged rainforest sites in Sabah, Borneo. We show that myrmecophile functional diversity of pselaphine beetles increases as ant abundance increases. Old growth rainforest sites support a high abundance of ants, which is associated with a high abundance of probable myrmecophilous pselaphines. These results suggest a potential link between adult morphological characters and the functional role these beetles play in rainforest litter as ecological interaction partners with ants.
    Matched MeSH terms: Ants/physiology*
  14. Knowlton ED, Kamath A
    Neotrop. Entomol., 2018 Dec;47(6):780-785.
    PMID: 30191403 DOI: 10.1007/s13744-018-0631-6
    Many organisms use chemicals to deter enemies. Some spiders can modify the composition of their silk to deter predators from climbing onto their webs. The Malaysian golden orb-weaver Nephila antipodiana (Walckenaer) produces silk containing an alkaloid (2-pyrrolidinone) that functions as a defense against ant invasion-ants avoid silk containing this chemical. In the present study, we test the generality of ants' silk avoidance behavior in the field. We introduced three ant species to the orb webs of Nephila clavipes (Linnaeus) in the tropical rainforest of La Selva, Costa Rica. We found that predatory army ants (Eciton burchellii Westwood) as well as non-predatory leaf-cutting ants (Atta cephalotes Linnaeus and Acromyrmex volcanus Wheeler) avoided adult N. clavipes silk, suggesting that an additional species within genus Nephila may possess ant-deterring silk. Our field assay also suggests that silk avoidance behavior is found in multiple ant species.
    Matched MeSH terms: Ants/physiology*
  15. Griffiths HM, Ashton LA, Walker AE, Hasan F, Evans TA, Eggleton P, et al.
    J Anim Ecol, 2018 Jan;87(1):293-300.
    PMID: 28791685 DOI: 10.1111/1365-2656.12728
    Ants are diverse and abundant, especially in tropical ecosystems. They are often cited as the agents of key ecological processes, but their precise contributions compared with other organisms have rarely been quantified. Through the removal of food resources from the forest floor and subsequent transport to nests, ants play an important role in the redistribution of nutrients in rainforests. This is an essential ecosystem process and a key energetic link between higher trophic levels, decomposers and primary producers. We used the removal of carbohydrate, protein and seed baits as a proxy to quantify the contribution that ants, other invertebrates and vertebrates make to the redistribution of nutrients around the forest floor, and determined to what extent there is functional redundancy across ants, other invertebrate and vertebrate groups. Using a large-scale, field-based manipulation experiment, we suppressed ants from c. 1 ha plots in a lowland tropical rainforest in Sabah, Malaysia. Using a combination of treatment and control plots, and cages to exclude vertebrates, we made food resources available to: (i) the whole foraging community, (ii) only invertebrates and (iii) only non-ant invertebrates. This allowed us to partition bait removal into that taken by vertebrates, non-ant invertebrates and ants. Additionally, we examined how the non-ant invertebrate community responded to ant exclusion. When the whole foraging community had access to food resources, we found that ants were responsible for 52% of total bait removal whilst vertebrates and non-ant invertebrates removed the remaining 48%. Where vertebrates were excluded, ants carried out 61% of invertebrate-mediated bait removal, with all other invertebrates removing the remaining 39%. Vertebrates were responsible for just 24% of bait removal and invertebrates (including ants) collectively removed the remaining 76%. There was no compensation in bait removal rate when ants and vertebrates were excluded, indicating low functional redundancy between these groups. This study is the first to quantify the contribution of ants to the removal of food resources from rainforest floors and thus nutrient redistribution. We demonstrate that ants are functionally unique in this role because no other organisms compensated to maintain bait removal rate in their absence. As such, we strengthen a growing body of evidence establishing ants as ecosystem engineers, and provide new insights into the role of ants in maintaining key ecosystem processes. In this way, we further our basic understanding of the functioning of tropical rainforest ecosystems.
    Matched MeSH terms: Ants/physiology*
  16. Edwards DP, Woodcock P, Edwards FA, Larsen TH, Hsu WW, Benedick S, et al.
    Ecol Appl, 2012 Mar;22(2):561-71.
    PMID: 22611854 DOI: 10.1890/11-1362.1
    A key driver of rain forest degradation is rampant commercial logging. Reduced-impact logging (RIL) techniques dramatically reduce residual damage to vegetation and soils, and they enhance the long-term economic viability of timber operations when compared to conventionally managed logging enterprises. Consequently, the application of RIL is increasing across the tropics, yet our knowledge of the potential for RIL also to reduce the negative impacts of logging on biodiversity is minimal. We compare the impacts of RIL on birds, leaf-litter ants, and dung beetles during a second logging rotation in Sabah, Borneo, with the impacts of conventional logging (CL) as well as with primary (unlogged) forest. Our study took place 1-8 years after the cessation of logging. The species richness and composition of RIL vs. CL forests were very similar for each taxonomic group. Both RIL and CL differed significantly from unlogged forests in terms of bird and ant species composition (although both retained a large number of the species found in unlogged forests), whereas the composition of dung beetle communities did not differ significantly among forest types. Our results show little difference in biodiversity between RIL and CL over the short-term. However, biodiversity benefits from RIL may accrue over longer time periods after the cessation of logging. We highlight a severe lack of studies investigating this possibility. Moreover, if RIL increases the economic value of selectively logged forests (e.g., via REDD+, a United Nations program: Reducing Emissions from Deforestation and Forest Degradation in Developing Countries), it could help prevent them from being converted to agricultural plantations, which results in a tremendous loss of biodiversity.
    Matched MeSH terms: Ants/physiology
  17. Woodcock P, Edwards DP, Fayle TM, Newton RJ, Khen CV, Bottrell SH, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3256-64.
    PMID: 22006966 DOI: 10.1098/rstb.2011.0031
    South East Asia is widely regarded as a centre of threatened biodiversity owing to extensive logging and forest conversion to agriculture. In particular, forests degraded by repeated rounds of intensive logging are viewed as having little conservation value and are afforded meagre protection from conversion to oil palm. Here, we determine the biological value of such heavily degraded forests by comparing leaf-litter ant communities in unlogged (natural) and twice-logged forests in Sabah, Borneo. We accounted for impacts of logging on habitat heterogeneity by comparing species richness and composition at four nested spatial scales, and examining how species richness was partitioned across the landscape in each habitat. We found that twice-logged forest had fewer species occurrences, lower species richness at small spatial scales and altered species composition compared with natural forests. However, over 80 per cent of species found in unlogged forest were detected within twice-logged forest. Moreover, greater species turnover among sites in twice-logged forest resulted in identical species richness between habitats at the largest spatial scale. While two intensive logging cycles have negative impacts on ant communities, these degraded forests clearly provide important habitat for numerous species and preventing their conversion to oil palm and other crops should be a conservation priority.
    Matched MeSH terms: Ants/physiology*
  18. Chong KF, Lee CY
    J. Econ. Entomol., 2010 Oct;103(5):1775-83.
    PMID: 21061979
    The longlegged ant, Anoplolepis gracilipes (Fr. Smith) (Hymenoptera: Formicidae), is a highly invasive species that can aggressively displace other ant species. We conducted laboratory assays to examine interspecies aggression of A. gracilipes versus 15 sympatric ant species found in the urban environment and disturbed habitat in Malaysia: Monomorium pharaonis (L.), Monomorium floricola (Jerdon), Monomorium orientale Mayr, Monomorium destructor (Jerdon), Pheidole parva Mayr, Crematogaster sp., Solenopsis geminata (F.), Tapinoma indicum (Forel), Tapinoma melanocephalum (F.), Technomyrmnex butteli Forel, Dolichoderus thoracicus (Smith), Paratrechina longicornis (Latrielle), Oecophylla smaragdina (F), Camponotus sp., and Tetraponera rufonigra (Jerdon). A. gracilipes showed aggressive behavior toward all opponent species, except the smallest M. orientale. Opponent species size (body size, head width, and mandible width) was significantly correlated with A. gracilipes aggression level and mortality rate. We also found a significant positive relationship between A. gracilipes aggression level and the mortality of the opponent species. The results suggest that invasive populations of A. gracilipes would have the greatest impact on larger ant species. In addition, we examined the intraspecific aggression of A. gracilipes. We found that A. gracilipes from different localities in Malaysia showed intraspecific aggression toward one another. This finding differs from the results of studies conducted in Christmas Island earlier. Differences in the genetic variability among populations may explain these differing results.
    Matched MeSH terms: Ants/physiology
  19. Drescher J, Blüthgen N, Feldhaar H
    Mol Ecol, 2007 Apr;16(7):1453-65.
    PMID: 17391269
    Invasive species are one of the main sources of the ongoing global loss of biodiversity. Invasive ants are known as particularly damaging invaders and their introductions are often accompanied by population-level behavioural and genetic changes that may contribute to their success. Anoplolepis gracilipes is an invasive ant that has just recently received increased attention due to its negative impact on native ecosystems. We examined the behaviour and population structure of A. gracilipes in Sabah, Malaysia. A total of 475 individuals from 24 colonies were genotyped with eight microsatellite markers. Intracolonial relatedness was high, ranging from 0.37 to 1 (mean +/- SD: 0.82 +/- 0.04), while intercolonial relatedness was low (0.0 +/- 0.02, range -0.5-0.76). We compared five distinct sampling regions in Sabah and Brunei. A three-level hierarchical F-analysis revealed high genetic differentiation among colonies within the same region, but low genetic differentiation within colonies or across regions. Overall levels of heterozygosity were unusually high (mean H(O) = 0.95, mean H(E) = 0.71) with two loci being entirely heterozygous, indicating an unusual reproductive system in this species. Bioassays revealed a negative correlation between relatedness and aggression, suggesting kinship as one factor facilitating supercolony formation in this species. Furthermore, we genotyped one individual per nest from Sabah (22 nests), Sarawak (one nest), Brunei (three nests) and the Philippines (two nests) using two mitochondrial DNA markers. We found six haplotypes, two of which included 82.1% of all sequences. Our study shows that the sampled area in Sabah consists of a mosaic of differently interrelated nests in different stages of colony establishment. While some of the sampled colonies may belong to large supercolonies, others are more likely to represent recently introduced or dispersed propagules that are just beginning to expand.
    Matched MeSH terms: Ants/physiology*
  20. Bänfer G, Moog U, Fiala B, Mohamed M, Weising K, Blattner FR
    Mol Ecol, 2006 Dec;15(14):4409-24.
    PMID: 17107473
    Macaranga (Euphorbiaceae) includes about 280 species with a palaeotropic distribution. The genus not only comprises some of the most prominent pioneer tree species in Southeast Asian lowland dipterocarp forests, it also exhibits a substantial radiation of ant-plants (myrmecophytes). Obligate ant-plant mutualisms are formed by about 30 Macaranga species and 13 ant species of the genera Crematogaster or Camponotus. To improve our understanding of the co-evolution of the ants and their host plants, we aim at reconstructing comparative organellar phylogeographies of both partners across their distributional range. Preliminary evidence indicated that chloroplast DNA introgression among closely related Macaranga species might occur. We therefore constructed a comprehensive chloroplast genealogy based on DNA sequence data from the noncoding ccmp2, ccmp6, and atpB-rbcL regions for 144 individuals from 41 Macaranga species, covering all major evolutionary lineages within the three sections that contain myrmecophytes. A total of 88 chloroplast haplotypes were identified, and grouped into a statistical parsimony network that clearly distinguished sections and well-defined subsectional groups. Within these groups, the arrangement of haplotypes followed geographical rather than taxonomical criteria. Thus, up to six chloroplast haplotypes were found within single species, and up to seven species shared a single haplotype. The spatial distribution of the chloroplast types revealed several dispersals between the Malay Peninsula and Borneo, and a deep split between Sabah and the remainder of Borneo. Our large-scale chloroplast genealogy highlights the complex history of migration, hybridization, and speciation in the myrmecophytes of the genus Macaranga. It will serve as a guideline for adequate sampling and data interpretation in phylogeographic studies of individual Macaranga species and species groups.
    Matched MeSH terms: Ants/physiology*
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links