Displaying all 7 publications

Abstract:
Sort:
  1. Tang SY, Sivakumar M, Nashiru B
    Colloids Surf B Biointerfaces, 2013 Feb 1;102:653-8.
    PMID: 23107943 DOI: 10.1016/j.colsurfb.2012.08.036
    The present investigation focuses in investigating the effect of osmotic pressure, gelling on the mean droplet diameter, polydispersity index, droplet size stability of the developed novel Aspirin containing water-in-oil-in-water (W/O/W) nano multiple emulsion. The aspirin-loaded nano multiple emulsion formulation was successfully generated using two-stage ultrasonic cavitational emulsification which had been reported in author's previous study. The osmotic behavior of ultrasonically prepared nano multiple emulsions were also examined with different glucose concentrations both in the inner and outer aqueous phases. In addition, introducing gelatin into the formulation also observed to play an important role in preventing the interdroplet coalescence via the formation of interfacial rigid film. Detailed studies were also made on the possible mechanisms of water migration under osmotic gradient which primarily caused by the permeation of glucose. Besides, the experimental results have shown that the interfacial tension between the two immiscible phases decreases with varying the composition of organic phase. Although the W/O/W emulsion prepared with the inner/outer glucose weight ratio of 1-0.5% (w/w) showed an excellent droplet stability, the formulation containing 0.5% (w/w) glucose in the inner aqueous phase appeared to be the most stable with minimum change in the mean droplet size upon one-week storage period. Based on the optimization, nano multiple emulsion droplets with the mean droplet diameter of around 400 nm were produced using 1.25% (w/w) Span 80 and 0.5% Cremophore EL. Overall, our investigation makes a pathway in proving that the use of ultrasound cavitation is an efficient yet promising approach in the generation of stable and uniform nano multiple emulsions and could be used in the encapsulation of various active pharmaceutical ingredients in the near future.
    Matched MeSH terms: Aspirin/chemistry*
  2. Brela MZ, Wójcik MJ, Witek ŁJ, Boczar M, Wrona E, Hashim R, et al.
    J Phys Chem B, 2016 04 28;120(16):3854-62.
    PMID: 27045959 DOI: 10.1021/acs.jpcb.6b01601
    In this study, the proton dynamics of hydrogen bonds for two forms of crystalline aspirin was investigated by the Born-Oppenheimer molecular dynamics (BOMD) method. Analysis of the geometrical parameters of hydrogen bonds using BOMD reveals significant differences in hydrogen bonding between the two crystalline forms of aspirin, Form I and Form II. Analysis of the trajectory for Form I shows spontaneous proton transfer in cyclic dimers, which is absent in Form II. Quantization of the O-H stretching modes allows a detailed discussion on the strength of hydrogen-bonding interactions. The focal point of our study is examination of the hydrogen bond characteristics in the crystal structure and clarification of the influence of hydrogen bonding on the presence of the two crystalline forms of aspirin. In the BOMD method, thermal motions were taken into account. Solving the Schrödinger equation for the snapshots of 2D proton potentials, extracted from MD, gives the best agreement with IR spectra. The character of medium-strong hydrogen bonds in Form I of aspirin was compared with that of weaker hydrogen bonds in aspirin Form II. Two proton minima are present in the potential function for the hydrogen bonds in Form I. The band contours, calculated by using one- and two-dimensional O-H quantization, reflect the differences in the hydrogen bond strengths between the two crystalline forms of aspirin, as well as the strong hydrogen bonding in the cyclic dimers of Form I and the medium-strong hydrogen bonding in Form II.
    Matched MeSH terms: Aspirin/chemistry*
  3. Veronica N, Heng PWS, Liew CV
    Mol Pharm, 2023 Feb 06;20(2):1072-1085.
    PMID: 36480246 DOI: 10.1021/acs.molpharmaceut.2c00812
    The stability of a moisture-sensitive drug in tablet formulations depends particularly on the environment's relative humidity (RH) and the products' prior exposure to moisture. This study was designed to understand drug stability in relation to the moisture interaction of the excipients, moisture history of the tablets, and RH of the environment. The stability study was performed on tablets containing acetylsalicylic acid (ASA), formulated with common pharmaceutical excipients like native maize starch, microcrystalline cellulose (MCC), partially pregelatinized maize starch (PGS), dicalcium phosphate dihydrate (DCP), lactose, and mannitol. The tablets were subjected to storage conditions with RH cycling alternating between 53% and 75%. Results were also compared to tablets stored at a constant RH of 53% or 75%. The excipients demonstrated marked differences in their interactions with moisture. They could be broadly grouped as excipients with RH-dependent moisture content (native maize starch, MCC, and PGS) and RH-independent moisture content (DCP, lactose, and mannitol). As each excipient interacted differently with moisture, degradation of ASA in the tablets depended on the excipients' ability to modulate the moisture availability for degradation. The lowest ASA degradation was observed in tablets formulated with low moisture content water-soluble excipients, such as lactose and mannitol. The impact of RH cycling on ASA stability was apparent in tablets containing native maize starch, MCC, PGS, or DCP. These findings suggested that the choice of excipients influences the effect of moisture history on drug stability. The results from studies investigating moisture interaction of excipients and drug stability are valuable to understanding the inter-relationship between excipients, moisture history, and drug stability.
    Matched MeSH terms: Aspirin/chemistry
  4. Tang SY, Shridharan P, Sivakumar M
    Ultrason Sonochem, 2013 Jan;20(1):485-97.
    PMID: 22633626 DOI: 10.1016/j.ultsonch.2012.04.005
    In the present investigation, the operating efficiency of a bench-top air-driven microfluidizer has been compared to that of a bench-top high power ultrasound horn in the production of pharmaceutical grade nanoemulsions using aspirin as a model drug. The influence of important process variables as well as the pre-homogenization and drug loading on the resultant mean droplet diameter and size distribution of emulsion droplets was studied in an oil-in-water nanoemulsion incorporated with a model drug aspirin. Results obtained show that both the emulsification methods were capable of producing very fine nanoemulsions containing aspirin with the minimum droplet size ranging from 150 to 170 nm. In case of using the microfluidizer, it has been observed that the size of the emulsion droplets obtained was almost independent of the applied microfluidization pressure (200-600 bar) and the number of passes (up to 10 passes) while the pre-homogenization and drug loading had a marginal effect in increasing the droplet size. Whereas, in the case of ultrasound emulsification, the droplet size was generally decreased with an increase in sonication amplitude (50-70%) and period of sonication but the resultant emulsion was found to be dependent on the pre-homogenization and drug loading. The STEM microscopic observations illustrated that the optimized formulations obtained using ultrasound cavitation technique are comparable to microfluidized emulsions. These comparative results demonstrated that ultrasound cavitation is a relatively energy-efficient yet promising method of pharmaceutical nanoemulsions as compared to microfluidizer although the means used to generate the nanoemulsions are different.
    Matched MeSH terms: Aspirin/chemistry*
  5. Tang SY, Manickam S, Wei TK, Nashiru B
    Ultrason Sonochem, 2012 Mar;19(2):330-45.
    PMID: 21835676 DOI: 10.1016/j.ultsonch.2011.07.001
    In the present study, response surface methodology (RSM) based on central composite design (CCD) was employed to investigate the influence of main emulsion composition variables, namely drug loading, oil content, emulsifier content as well as the effect of the ultrasonic operating parameters such as pre-mixing time, ultrasonic amplitude, and irradiation time on the properties of aspirin-loaded nanoemulsions. The two main emulsion properties studied as response variables were: mean droplet size and polydispersity index. The ultimate goal of the present work was to determine the optimum level of the six independent variables in which an optimal aspirin nanoemulsion with desirable properties could be produced. The response surface analysis results clearly showed that the variability of two responses could be depicted as a linear function of the content of main emulsion compositions and ultrasonic processing variables. In the present investigation, it is evidently shown that ultrasound cavitation is a powerful yet promising approach in the controlled production of aspirin nanoemulsions with smaller average droplet size in a range of 200-300 nm and with a polydispersity index (PDI) of about 0.30. This study proved that the use of low frequency ultrasound is of considerable importance in the controlled production of pharmaceutical nanoemulsions in the drug delivery system.
    Matched MeSH terms: Aspirin/chemistry*
  6. Ngaini Z, Mortadza NA
    Nat Prod Res, 2019 Dec;33(24):3507-3514.
    PMID: 29911437 DOI: 10.1080/14786419.2018.1486310
    Chemical modification of medicines from natural product-based molecules has become of interest in recent years. In this study, a series of halogenated azo derivatives 1a-d were synthesised via coupling reaction, followed by Steglich esterification with aspirin (a natural product derivative) to form azo derivatives 2a-d. While, halogenated azo-aspirin 3a-d were synthesised via direct coupling reaction of aspirin and diazonium salt. Bacteriostatic activity was demonstrated against E. coli and S. aureus via turbidimetric kinetic method. Compound 3a-d showed excellent antibacterial activities against E. coli (MIC 75-94 ppm) and S. aureus (MIC 64-89 ppm) compared to ampicillin (MIC 93 and 124 ppm respectively), followed by 1a-d and 2a-d. The presence of reactive groups of -OH, N=N, C=O and halogens significantly contribute excellent interaction towards E. coli and S. aureus. Molecular dockings analysis of 3a against MIaC protein showed binding free energy of -7.2 kcal/mol (E. coli) and -6.6 kcal/mol (S. aureus).
    Matched MeSH terms: Aspirin/chemistry*
  7. Tang SY, Sivakumar M, Ng AM, Shridharan P
    Int J Pharm, 2012 Jul 1;430(1-2):299-306.
    PMID: 22503988 DOI: 10.1016/j.ijpharm.2012.03.055
    The present study investigated the anti-inflammatory and analgesic activities of novel aspirin oil-in-water (O/W) nanoemulsion and water-in-oil-in-water (W/O/W) nano multiple emulsion formulations generated using ultrasound cavitation techniques. The anti-inflammatory activities of nanoemulsion and nano multiple emulsion were determined using the λ-carrageenan-induced paw edema model. The analgesic activities of both nanoformulations were determined using acetic acid-induced writhing response and hot plate assay. For comparison, the effect of pretreatment with blank nanoemulsion and reference aspirin suspension were also studied for their anti-inflammatory and antinociceptive activities. The results showed that oral administration of nanoemulsion and nano multiple emulsion containing aspirin (60 mg/kg) significantly reduced paw edema induced by λ-carrageenan injection. Both nanoformulations decreased the number of abdominal constriction in acetic acid-induced writhing model. Pretreatment with nanoformulations led to a significant increase in reaction time in hot plate assay. Nanoemulsion demonstrated an enhanced anti-inflammatory and analgesic effects compared to reference suspension while nano multiple emulsion exhibited a mild inhibitory effects in the three experimental animal model tests. The results obtained for nano multiple emulsion were relatively lower than reference. However, administration of blank nanoemulsion did not alter the nociceptive response significantly though it showed slight anti-inflammatory effect. These experimental studies suggest that nanoemulsion and nano multiple emulsion produced a pronounced anti-inflammatory and analgesic effects in rats and may be candidates as new nanocarriers for pharmacological NSAIDs in the treatment of inflammatory disorders and alleviating pains.
    Matched MeSH terms: Aspirin/chemistry
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links