Displaying all 4 publications

Abstract:
Sort:
  1. Shafie MH, Yusof R, Samsudin D, Gan CY
    Int J Biol Macromol, 2020 Nov 15;163:1276-1282.
    PMID: 32673725 DOI: 10.1016/j.ijbiomac.2020.07.109
    The potential of Averrhoa bilimbi pectin (ABP) as a source of biopolymer for edible film (EF) production was explored, and deep eutectic solvent (DES) (1% w/w) containing choline chloride-citric acid monohydrate at a molar ratio of 1:1 was used as the plasticizer. The EF-ABP3:1, which was produced from ABP with large branch size, showed a higher value of melting temperature (175.30 °C), tensile stress (7.32 MPa) and modulus (33.64 MPa). The EF-ABP3:1 also showed better barrier properties by obtaining the lowest water vapor transmission rates (1.10-1.18 mg/m2.s) and moisture absorption values (2.61-32.13%) depending on the relative humidity compared to other EF-ABPs (1.39-1.83 mg/m2.s and 3.48-51.50%, respectively) that have linear structure with smaller branch size. From these results, it was suggested that the galacturonic acid content, molecular weight, degree of esterification and pectin structure of ABP significantly influenced the properties of EFs. The interaction of highly branched pectin chains was stronger than the linear chains, thus reduced the effect of plasticizer and produced a mechanically stronger EF with better barrier properties. Hence, it was suggested that these EFs could be used as alternative degradable packaging/coating materials.
    Matched MeSH terms: Averrhoa/chemistry*
  2. Shafie MH, Yusof R, Gan CY
    Carbohydr Polym, 2019 Jul 15;216:303-311.
    PMID: 31047070 DOI: 10.1016/j.carbpol.2019.04.007
    The Box-Behnken design was applied to optimize the extraction of pectin from Averrhoa bilimbi (ABP) using deep eutectic solvents (DES). The four variables of extraction were percentage of DES (X1), extraction time (X2), temperature (X3), and molar ratio of DES components (X4). The quadratic regression equation was established as a predicted model with R2 value of 0.9375. The optimal condition was X1 = 3.74% (w/v), X2 = 2.5 h, X3 = 80 °C, and X4 = 1:1. No significant difference between the predicted (14.70%) and experimental (14.44%) maximum yield of sample was noted. Characterization of physico-chemical properties characterization of ABP was performed. The main components of ABP were galacturonic acids, arabinoses, and xyloses. ABP also showed good functional properties such as water holding capacity (3.70 g/g), oil holding capacity (2.40 g/g), and foaming capacity (133.33%). The results also showed that ABP exhibited free radical scavenging activity (41.46%) and ferric reducing antioxidant power (1.15 mM).
    Matched MeSH terms: Averrhoa/chemistry*
  3. Ramadan NS, Wessjohann LA, Mocan A, Vodnar DC, El-Sayed NH, El-Toumy SA, et al.
    Molecules, 2020 May 22;25(10).
    PMID: 32455938 DOI: 10.3390/molecules25102423
    Averrhoa carambola L. is a tropical tree with edible fruit that grows at different climatic conditions. Despite its nutritive value and reported health benefits, it is a controversial fruit owing to its rich oxalate content. The present study aimed at investigating aroma and nutrient primary metabolites distribution in A. carambola fruits grown in Indonesia, Malaysia (its endemic origin) versus Egypt, and at different ripening stages. Two techniques were employed to assess volatile and non-volatile metabolites including headspace solid-phase micro-extraction (HS-SPME) joined with gas chromatography coupled with mass-spectrometry (GC-MS) and GC-MS post silylation, respectively. Twenty-four volatiles were detected, with esters amounting for the major class of volatiles in Egyptian fruit at ca. 66%, with methyl caproate as the major component, distinguishing it from other origins. In contrast, aldehydes predominated tropically grown fruits with the ether myristicin found exclusively in these. Primary metabolites profiling led to the identification of 117 metabolites viz. sugars, polyols and organic acids. Fructose (38-48%) and glucose (21-25%) predominated sugar compositions in ripe fruits, whereas sorbitol was the major sugar alcohol (2.4-10.5%) in ripe fruits as well. Oxalic acid, an anti-nutrient with potential health risks, was the major organic acid detected in all the studied fruits (1.7-2.7%), except the Malaysian one (0.07%). It increases upon fruit ripening, including considerable amounts of volatile oxalate esters detected via SPME, and which must not be omitted in total oxalate determinations for safety assessments.
    Matched MeSH terms: Averrhoa/chemistry
  4. Lau WK, Noruddin NAA, Ariffin AH, Mahmud MZ, Noor MHM, Amanah A, et al.
    BMC Complement Altern Med, 2019 Sep 05;19(1):243.
    PMID: 31488120 DOI: 10.1186/s12906-019-2640-3
    BACKGROUND: Brown adipocytes are known to promote energy expenditure and limit weight gain to combat obesity. Averrhoa bilimbi, locally called belimbing buluh (DBB), is mainly used as an ethnomedicine in the treatment of metabolic disorders including diabetes mellitus, hypertension and obesity. The present study aims to investigate the browning activity on white adipocytes by A. bilimbi leaf extract and to evaluate the potential mechanisms.

    METHODS: Ethanolic leaf extract of A. bilimbi was exposed to Myf5 lineage precursor cells to stimulate adipocyte differentiation. Protein expressions of brown adipocyte markers were determined through high content screening analysis and validated through western blotting. Mito Stress Test assay was conducted to evaluate the cellular oxygen consumption rate upon A. bilimbi treatment.

    RESULTS: A. bilimbi ethanolic leaf extract exhibited an adipogenesis effect similar to a PPARgamma agonist. It also demonstrated brown adipocyte differentiation in myoblastic Myf5-positive precursor cells. Expression of UCP1 and PRDM16 were induced. The basal metabolic rate and respiratory capacity of mitochondria were increased upon A. bilimbi treatment.

    CONCLUSIONS: The findings suggest that Averrhoa bilimbi ethanolic leaf extract induces adipocyte browning through PRDM16 activation and enhances mitochondria activity due to UCP1 up-regulation.

    Matched MeSH terms: Averrhoa/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links