Displaying all 9 publications

Abstract:
Sort:
  1. Abd Rahman RN, Leow TC, Salleh AB, Basri M
    BMC Microbiol, 2007;7:77.
    PMID: 17692114
    Thermophilic Bacillus strains of phylogenetic Bacillus rRNA group 5 were described as a new genus Geobacillus. Their geographical distribution included oilfields, hay compost, hydrothermal vent or soils. The members from the genus Geobacillus have a growth temperatures ranging from 35 to 78 degrees C and contained iso-branched saturated fatty acids (iso-15:0, iso-16:0 and iso-17:0) as the major fatty acids. The members of Geobacillus have similarity in their 16S rRNA gene sequences (96.5-99.2%). Thermophiles harboring intrinsically stable enzymes are suitable for industrial applications. The quest for intrinsically thermostable lipases from thermophiles is a prominent task due to the laborious processes via genetic modification.
    Matched MeSH terms: Bacillaceae/classification; Bacillaceae/genetics; Bacillaceae/isolation & purification*; Bacillaceae/metabolism*
  2. Chan KG, Chen JW, Chang CY, Yin WF, Chan XY
    Genome Announc, 2015;3(2).
    PMID: 25814592 DOI: 10.1128/genomeA.00095-15
    In this work, we describe the genome of Lysinibacillus sp. strain A1, which was isolated from tropical soil. Analysis of its genome sequence shows the presence of a gene encoding for a putative peptidase responsible for nitrogen compounds.
    Matched MeSH terms: Bacillaceae
  3. Allison SD, AdeelaYasid N, Shariff FM, Abdul Rahman N
    J Microbiol Biotechnol, 2024 Feb 28;34(2):436-456.
    PMID: 38044750 DOI: 10.4014/jmb.2306.06050
    Several thermostable proteases have been identified, yet only a handful have undergone the processes of cloning, comprehensive characterization, and full exploitation in various industrial applications. Our primary aim in this study was to clone a thermostable alkaline protease from a thermophilic bacterium and assess its potential for use in various industries. The research involved the amplification of the SpSKF4 protease gene, a thermostable alkaline serine protease obtained from the Geobacillus thermoglucosidasius SKF4 bacterium through polymerase chain reaction (PCR). The purified recombinant SpSKF4 protease was characterized, followed by evaluation of its possible industrial applications. The analysis of the gene sequence revealed an open reading frame (ORF) consisting of 1,206 bp, coding for a protein containing 401 amino acids. The cloned gene was expressed in Escherichia coli. The molecular weight of the enzyme was measured at 28 kDa using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). The partially purified enzyme has its highest activity at a pH of 10 and a temperature of 80°C. In addition, the enzyme showed a half-life of 15 h at 80°C, and there was a 60% increase in its activity at 10 mM Ca2+ concentration. The activity of the protease was completely inhibited (100%) by phenylmethylsulfonyl fluoride (PMSF); however, the addition of sodium dodecyl sulfate (SDS) resulted in a 20% increase in activity. The enzyme was also stable in various organic solvents and in certain commercial detergents. Furthermore, the enzyme exhibited strong potential for industrial use, particularly as a detergent additive and for facilitating the recovery of silver from X-ray film.
    Matched MeSH terms: Bacillaceae*
  4. Ebrahimpour A, Abd Rahman RN, Ean Ch'ng DH, Basri M, Salleh AB
    BMC Biotechnol, 2008 Dec 23;8:96.
    PMID: 19105837 DOI: 10.1186/1472-6750-8-96
    BACKGROUND: Thermostable bacterial lipases occupy a place of prominence among biocatalysts owing to their novel, multifold applications and resistance to high temperature and other operational conditions. The capability of lipases to catalyze a variety of novel reactions in both aqueous and nonaqueous media presents a fascinating field for research, creating interest to isolate novel lipase producers and optimize lipase production. The most important stages in a biological process are modeling and optimization to improve a system and increase the efficiency of the process without increasing the cost.

    RESULTS: Different production media were tested for lipase production by a newly isolated thermophilic Geobacillus sp. strain ARM (DSM 21496 = NCIMB 41583). The maximum production was obtained in the presence of peptone and yeast extract as organic nitrogen sources, olive oil as carbon source and lipase production inducer, sodium and calcium as metal ions, and gum arabic as emulsifier and lipase production inducer. The best models for optimization of culture parameters were achieved by multilayer full feedforward incremental back propagation network and modified response surface model using backward elimination, where the optimum condition was: growth temperature (52.3 degrees C), medium volume (50 ml), inoculum size (1%), agitation rate (static condition), incubation period (24 h) and initial pH (5.8). The experimental lipase activity was 0.47 Uml(-1) at optimum condition (4.7-fold increase), which compared well to the maximum predicted values by ANN (0.47 Uml(-1)) and RSM (0.476 Uml(-1)), whereas R2 and AAD were determined as 0.989 and 0.059% for ANN, and 0.95 and 0.078% for RSM respectively.

    CONCLUSION: Lipase production is the result of a synergistic combination of effective parameters interactions. These parameters are in equilibrium and the change of one parameter can be compensated by changes of other parameters to give the same results. Though both RSM and ANN models provided good quality predictions in this study, yet the ANN showed a clear superiority over RSM for both data fitting and estimation capabilities. On the other hand, ANN has the disadvantage of requiring large amounts of training data in comparison with RSM. This problem was solved by using statistical experimental design, to reduce the number of experiments.

    Matched MeSH terms: Bacillaceae/enzymology*
  5. Rosland NA, Ikhsan N, Min CC, Yusoff FM, Karim M
    Curr Microbiol, 2021 Nov;78(11):3901-3912.
    PMID: 34522979 DOI: 10.1007/s00284-021-02642-2
    The emerging aquaculture industry is in need of non-antibiotic-based disease control approaches to minimize the risk of antibiotic-resistant bacteria. Bacterial infections mainly caused by Vibrio spp. have caused mass mortalities of fish especially during the larval stages. The objectives of this study were to verify the potential of symbiotic probiont strains, isolated from microalgae (Amphora, Chlorella, and Spirulina) for suppressing the growth of Vibrio spp. and at the same time ascertain their abilities to enhance microalgal biomass by mutualistic interactions through microalgae-bacteria symbiosis. In addition, in vivo studies on Artemia bioencapsulated with probiont strains (single strain and mix strains) and microalgae were evaluated. The selected potential probionts were identified as Lysinibacillus fusiformis strain A-1 (LFA-1), Bacillus sp. strain A-2 (BA-2), Lysinibacillus fusiformis strain Cl-3 (LFCl-3), and Bacillus pocheonensis strain S-2 (BPS-2) using 16s rRNA. The cell densities of Amphora culture supplemented with BA-2 and Chlorella culture supplemented with LFCl-3 were higher than those of the controls. Artemia bioencapsulated with mix strains (LFA-1 + BA-2 + LFCl-3 + BPS-2) and Amphora demonstrated the highest survival rate compared to the controls, after being challenged with V. harveyi (60 ± 4%) and V. parahaemolyticus (78 ± 2%). Our study postulated that BA-2 and LFCl-3 were found to be good promoting bacteria for microalgal growth and microalgae serve as a vector to transport probiotic into Artemia. Moreover, mixture of potential probionts is beneficial for Artemia supplementation in conferring protection to Artemia nauplii against pathogenic Vibrios.
    Matched MeSH terms: Bacillaceae
  6. Choo QC, Samian MR, Najimudin N
    Appl Environ Microbiol, 2003 Jun;69(6):3658-62.
    PMID: 12788777
    In this paper, we report the cloning and characterization of three Paenibacillus azotofixans DNA regions containing genes involved in nitrogen fixation. Sequencing analysis revealed the presence of nifB1H1D1K1 gene organization in the 4,607-bp SacI DNA fragment. This is the first report of linkage of a nifB open reading frame upstream of the structural nif genes. The second (nifB2H2) and third (nifH3) nif homologues are confined within the 6,350-bp HindIII and 2,840-bp EcoRI DNA fragments, respectively. Phylogenetic analysis demonstrated that NifH1 and NifH2 form a monophyletic group among cyanobacterial NifH proteins. NifH3, on the other hand, clusters among NifH proteins of the highly divergent methanogenic archaea.
    Matched MeSH terms: Bacillaceae/genetics*; Bacillaceae/metabolism
  7. Leow TC, Rahman RN, Basri M, Salleh AB
    Biosci Biotechnol Biochem, 2004 Jan;68(1):96-103.
    PMID: 14745170
    A thermostable extracellular lipase of Geobacillus sp. strain T1 was cloned in a prokaryotic system. Sequence analysis revealed an open reading frame of 1,251 bp in length which codes for a polypeptide of 416 amino acid residues. The polypeptide was composed of a signal peptide (28 amino acids) and a mature protein of 388 amino acids. Instead of Gly, Ala was substituted as the first residue of the conserved pentapeptide Gly-X-Ser-X-Gly. Successful gene expression was obtained with pBAD, pRSET, pET, and pGEX as under the control of araBAD, T7, T7 lac, and tac promoters, respectively. Among them, pGEX had a specific activity of 30.19 Umg(-1) which corresponds to 2927.15 Ug(-1) of wet cells after optimization. The recombinant lipase had an optimum temperature and pH of 65 degrees C and pH 9, respectively. It was stable up to 65 degrees C at pH 7 and active over a wide pH range (pH 6-11). This study presents a rapid cloning and overexpression, aimed at improving the enzyme yield for successful industrial application.
    Matched MeSH terms: Bacillaceae/enzymology*; Bacillaceae/genetics
  8. Zarkasi KZ, Halim MA, Nazari TF, Daud F
    Data Brief, 2018 Aug;19:514-519.
    PMID: 29900350 DOI: 10.1016/j.dib.2018.05.052
    This article contains data on the bacterial communities and its diversity associated with Anadara granosa. The A. granosa samples were obtained from two major estuaries in Penang, Malaysia using a culture dependent and 16S rRNA Illumina sequencing approaches. A. granosa, a commercial blood cockles and popular seafoods, is fragile to the surrounding environments. Thus, our research focused to better understand the bacterial communities and it diversity in the A. granosa, as well as on the generation of a metagenomic library from A. granosa to further understanding on it diversity. The bacteria Vibrionaceae (34.1%) was predominant in the A. granosa from both environments followed by Enterobacteriaceae (33.3%) and Bacillaceae (16.75%). Vibrio sp., Klebsiella sp., and Bacillus subtilis were the most abundant species present. The data generated in this research is the first metagenomic examination of A. granosa and will provide as a baseline to understand the bacterial communities associated with A. granosa and its surrounding natural environments.
    Matched MeSH terms: Bacillaceae
  9. Kurniawan SB, Abdullah SRS, Imron MF, Said NSM, Ismail N', Hasan HA, et al.
    Int J Environ Res Public Health, 2020 Dec 12;17(24).
    PMID: 33322826 DOI: 10.3390/ijerph17249312
    The utilization of metal-based conventional coagulants/flocculants to remove suspended solids from drinking water and wastewater is currently leading to new concerns. Alarming issues related to the prolonged effects on human health and further pollution to aquatic environments from the generated nonbiodegradable sludge are becoming trending topics. The utilization of biocoagulants/bioflocculants does not produce chemical residue in the effluent and creates nonharmful, biodegradable sludge. The conventional coagulation-flocculation processes in drinking water and wastewater treatment, including the health and environmental issues related to the utilization of metal-based coagulants/flocculants during the processes, are discussed in this paper. As a counterpoint, the development of biocoagulants/bioflocculants for drinking water and wastewater treatment is intensively reviewed. The characterization, origin, potential sources, and application of this green technology are critically reviewed. This review paper also provides a thorough discussion on the challenges and opportunities regarding the further utilization and application of biocoagulants/bioflocculants in water and wastewater treatment, including the importance of the selection of raw materials, the simplification of extraction processes, the application to different water and wastewater characteristics, the scaling up of this technology to a real industrial scale, and also the potential for sludge recovery by utilizing biocoagulants/bioflocculants in water/wastewater treatment.
    Matched MeSH terms: Bacillaceae
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links