Displaying all 15 publications

Abstract:
Sort:
  1. Lang G, Mitova MI, Cole AL, Din LB, Vikineswary S, Abdullah N, et al.
    J Nat Prod, 2006 Oct;69(10):1389-93.
    PMID: 17067148
    Six new linear peptides, pterulamides I-VI (1-6), were isolated from the fruiting bodies of a Malaysian Pterula species. The structures were elucidated by MS and 2D NMR experiments, and the absolute configurations of the constituent amino acids established using Marfey's method. The pterulamides are mainly assembled from nonpolar N-methylated amino acids and, most interestingly, have non-amino-acid N-terminal groups, among them the unusual cinnamoyl, (E)-3-methylsulfinylpropenoyl, and (E)-3-methylthiopropenoyl groups. Furthermore, pterulamides I-V are the first natural peptides with a methylamide C-terminus. Pterulamides I and IV are cytotoxic against the P388 cell line with IC50 values of 0.55 and 0.95 microg/mL (0.79 and 1.33 microM), respectively.
    Matched MeSH terms: Basidiomycota/chemistry*
  2. Periasamy V, Rizan N, Al-Ta'ii HM, Tan YS, Tajuddin HA, Iwamoto M
    Sci Rep, 2016 07 20;6:29879.
    PMID: 27435636 DOI: 10.1038/srep29879
    The discovery of semiconducting behavior of deoxyribonucleic acid (DNA) has resulted in a large number of literatures in the study of DNA electronics. Sequence-specific electronic response provides a platform towards understanding charge transfer mechanism and therefore the electronic properties of DNA. It is possible to utilize these characteristic properties to identify/detect DNA. In this current work, we demonstrate a novel method of DNA-based identification of basidiomycetes using current-voltage (I-V) profiles obtained from DNA-specific Schottky barrier diodes. Electronic properties such as ideality factor, barrier height, shunt resistance, series resistance, turn-on voltage, knee-voltage, breakdown voltage and breakdown current were calculated and used to quantify the identification process as compared to morphological and molecular characterization techniques. The use of these techniques is necessary in order to study biodiversity, but sometimes it can be misleading and unreliable and is not sufficiently useful for the identification of fungi genera. Many of these methods have failed when it comes to identification of closely related species of certain genus like Pleurotus. Our electronics profiles, both in the negative and positive bias regions were however found to be highly characteristic according to the base-pair sequences. We believe that this simple, low-cost and practical method could be useful towards identifying and detecting DNA in biotechnology and pathology.
    Matched MeSH terms: Basidiomycota/chemistry*
  3. Parvizpour S, Razmara J, Jomah AF, Shamsir MS, Illias RM
    J Mol Model, 2015 Mar;21(3):63.
    PMID: 25721655 DOI: 10.1007/s00894-015-2617-1
    Here, we present a novel psychrophilic β-glucanase from Glaciozyma antarctica PI12 yeast that has been structurally modeled and analyzed in detail. To our knowledge, this is the first attempt to model a psychrophilic laminarinase from yeast. Because of the low sequence identity (<40%), a threading method was applied to predict a 3D structure of the enzyme using the MODELLER9v12 program. The results of a comparative study using other mesophilic, thermophilic, and hyperthermophilic laminarinases indicated several amino acid substitutions on the surface of psychrophilic laminarinase that totally increased the flexibility of its structure for efficient catalytic reactions at low temperatures. Whereas several structural factors in the overall structure can explain the weak thermal stability, this research suggests that the psychrophilic adaptation and catalytic activity at low temperatures were achieved through existence of longer loops and shorter or broken helices and strands, an increase in the number of aromatic and hydrophobic residues, a reduction in the number of hydrogen bonds and salt bridges, a higher total solvent accessible surface area, and an increase in the exposure of the hydrophobic side chains to the solvent. The results of comparative molecular dynamics simulation and principal component analysis confirmed the above strategies adopted by psychrophilic laminarinase to increase its catalytic efficiency and structural flexibility to be active at cold temperature.
    Matched MeSH terms: Basidiomycota/chemistry
  4. Foong PM, Abedi Karjiban R, Normi YM, Salleh AB, Abdul Rahman MB
    Metallomics, 2015 Jan;7(1):156-64.
    PMID: 25412156 DOI: 10.1039/c4mt00163j
    Metal ions are one of the essential elements which are extensively involved in many cellular activities. With rapid advancements in genome sequencing techniques, bioinformatics approaches have provided a promising way to extract functional information of a protein directly from its primary structure. Recent findings have suggested that the metal content of an organism can be predicted from its complete genome sequences. Characterizing the biological metal usage of cold-adapted organisms may help to outline a comprehensive understanding of the metal-partnerships between the psychrophile and its adjacent environment. The focus of this study is targeted towards the analysis of the metal composition of a psychrophilic yeast Glaciozyma antarctica PI12 isolated from sea ice of Antarctica. Since the cellular metal content of an organism is usually reflected in the expressed metal-binding proteins, the putative metal-binding sequences from G. antarctica PI12 were identified with respect to their sequence homologies, domain compositions, protein families and cellular distribution. Most of the analyses revealed that the proteome was enriched with zinc, and the content of metal decreased in the order of Zn > Fe > Mg > Mn, Ca > Cu. Upon comparison, it was found that the metal compositions among yeasts were almost identical. These observations suggested that G. antarctica PI12 could have inherited a conserved trend of metal usage similar to modern eukaryotes, despite its geographically isolated habitat.
    Matched MeSH terms: Basidiomycota/chemistry*
  5. Parvizpour S, Razmara J, Ramli AN, Md Illias R, Shamsir MS
    J Comput Aided Mol Des, 2014 Jun;28(6):685-98.
    PMID: 24849507 DOI: 10.1007/s10822-014-9751-1
    The structure of a novel psychrophilic β-mannanase enzyme from Glaciozyma antarctica PI12 yeast has been modelled and analysed in detail. To our knowledge, this is the first attempt to model a psychrophilic β-mannanase from yeast. To this end, a 3D structure of the enzyme was first predicted using a threading method because of the low sequence identity (<30%) using MODELLER9v12 and simulated using GROMACS at varying low temperatures for structure refinement. Comparisons with mesophilic and thermophilic mannanases revealed that the psychrophilic mannanase contains longer loops and shorter helices, increases in the number of aromatic and hydrophobic residues, reductions in the number of hydrogen bonds and salt bridges and numerous amino acid substitutions on the surface that increased the flexibility and its efficiency for catalytic reactions at low temperatures.
    Matched MeSH terms: Basidiomycota/chemistry
  6. Wong KH, Naidu M, David RP, Bakar R, Sabaratnam V
    Int J Med Mushrooms, 2012;14(5):427-46.
    PMID: 23510212
    We present a model case study of the activity of aqueous extract of Hericium erinaceus fresh fruit bodies in promoting functional recovery following crush injury to the peroneal nerve in adult female Sprague-Dawley rats. The aim was to explore the possible use of this mushroom in nerve repair. The activities of aqueous extract were compared to activities exhibited by mecobalamin (vitamin B12), which has been widely used in the treatment of peripheral nerve disorders. Analysis of walking track indicated that return of hind limb function and normal toe spreading occurred earlier in treated groups than in the negative control (non-treated) group. Regeneration of axons and reinnervation of motor endplates/neuromuscular junction in extensor digitorum longus muscle of rats in treated groups developed better than in the negative control group. Further, immunofluorescence studies also showed that dorsal root ganglia neurons ipsilateral to the crush injury in rats of treated groups expressed higher immunoreactivities for Akt and MAPK signaling pathways as well as c-Jun and c-Fos genes compared to the negative control group. Akt cascade plays a major role in mediating neurotrophin-promoted cell survival, while MAPK cascade is involved in mediating neurite outgrowth. Immediate early gene expression was also involved in the cascade of events leading to regeneration. Local axonal protein synthetic machinery was also enhanced in the distal segments of crushed nerves in treated groups. Therefore, daily oral administration of H. erinaceus could promote the regeneration of injured rat peroneal nerve in the early stage of recovery.
    Matched MeSH terms: Basidiomycota/chemistry*
  7. Kho YS, Vikineswary S, Abdullah N, Kuppusamy UR, Oh HI
    J Med Food, 2009 Feb;12(1):167-74.
    PMID: 19298211 DOI: 10.1089/jmf.2007.0568
    Auricularia auricula-judae is currently grown in Malaysia. In the present study, the methanolic extracts from fruit bodies (fresh, oven-dried, and freeze-dried) and mycelium of A. auricula-judae were evaluated for their antioxidant capacities based on 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activity and ferric reducing antioxidant power (FRAP) assay. The total phenolic content in the extracts were also measured. The extract of freeze-dried fruit bodies of A. auricula-judae had potent DPPH free radical scavenging activity with a 50% effective concentration of 2.87 mg/mL, whereas the FRAP value of A. auricula-judae mycelium was 5.22 micromol of FeSO(4).7H(2)O equivalents/g of mycelium sample. Further, a positive correlation (R(2) = 0.7668) between FRAP level of A. auricula-judae extracts and the total phenolic contents was observed. Thus the method of processing of fresh fruit bodies had an effect on the antioxidant potential of A. auricula-judae.
    Matched MeSH terms: Basidiomycota/chemistry*
  8. Samberkar S, Gandhi S, Naidu M, Wong KH, Raman J, Sabaratnam V
    Int J Med Mushrooms, 2015;17(11):1047-54.
    PMID: 26853959
    Neurodegenerative disease is defined as a deterioration of the nervous system in the intellectual and cognitive capabilities. Statistics show that more than 80-90 million individuals age 65 and above in 2050 may be affected by neurodegenerative conditions like Alzheimer's and Parkinson's disease. Studies have shown that out of 2000 different types of edible and/or medicinal mushrooms, only a few countable mushrooms have been selected until now for neurohealth activity. Hericium erinaceus is one of the well-established medicinal mushrooms for neuronal health. It has been documented for its regenerative capability in peripheral nerve. Another mushroom used as traditional medicine is Lignosus rhinocerotis, which has been used for various illnesses. It has been documented for its neurite outgrowth potential in PC12 cells. Based on the regenerative capabilities of both the mushrooms, priority was given to select them for our study. The aim of this study was to investigate the potential of H. erinaceus and L. rhinocerotis to stimulate neurite outgrowth in dissociated cells of brain, spinal cord, and retina from chick embryo when compared to brain derived neurotrophic factor (BDNF). Neurite outgrowth activity was confirmed by the immu-nofluorescence method in all tissue samples. Treatment with different concentrations of extracts resulted in neuronal differentiation and neuronal elongation. H. erinaceus extract at 50 µg/mL triggered neurite outgrowth at 20.47%, 22.47%, and 21.70% in brain, spinal cord, and retinal cells. L. rhinocerotis sclerotium extract at 50 µg/mL induced maximum neurite outgrowth of 20.77% and 24.73% in brain and spinal cord, whereas 20.77% of neurite outgrowth was observed in retinal cells at 25 µg/mL, respectively.
    Matched MeSH terms: Basidiomycota/chemistry*
  9. Phan CW, Lee GS, Hong SL, Wong YT, Brkljača R, Urban S, et al.
    Food Funct, 2014 Dec;5(12):3160-9.
    PMID: 25288148 DOI: 10.1039/c4fo00452c
    Hericium erinaceus (Bull.: Fr.) Pers. is an edible and medicinal mushroom used traditionally to improve memory. In this study, we investigated the neuritogenic effects of hericenones isolated from H. erinaceus and the mechanisms of action involved. H. erinaceus was cultivated and the secondary metabolites were elucidated by high performance liquid chromatography (HPLC), liquid chromatography-mass spectrometry (LC-MS), and nuclear magnetic resonance (NMR). The secondary metabolites were tested for neurite outgrowth activity (if any). Rat pheochromocytoma (PC12) cells were employed and the nerve growth factor (NGF) level was also determined. The signaling pathways involved in the mushroom-induced neuritogenesis were investigated using several pharmacological inhibitors. Hericenones B-E (1-4), erinacerin A (5) and isohericerin (6) were isolated from the basidiocarps of H. erinaceus. The hericenones did not promote neurite outgrowth but when induced with a low concentration of NGF (5 ng mL(-1)), the neuritogenic activity was comparable to that of the positive control (50 ng mL(-1) of NGF). Hericenone E was able to stimulate NGF secretion which was two-fold higher than that of the positive control. The neuritogenesis process was partially blocked by the tyrosine kinase receptor (Trk) inhibitor, K252a, suggesting that the neuritogenic effect was not solely due to NGF. Hericenone E also increased the phosphorylation of extracellular-signal regulated kinases (ERKs) and protein kinase B (Akt). Taken together, this study suggests that hericenone E potentiated NGF-induced neuritogenesis in PC12 cells via the MEK/ERK and PI3K/Akt pathways.
    Matched MeSH terms: Basidiomycota/chemistry*
  10. Abdulla MA, Fard AA, Sabaratnam V, Wong KH, Kuppusamy UR, Abdullah N, et al.
    Int J Med Mushrooms, 2011;13(1):33-9.
    PMID: 22135902
    This study was conducted to evaluate the effects of topical application of aqueous extract of Hericium erinaceus fruiting bodies (HEFB) on the rate of wound healing enclosure and histology of the healed wound. Five groups of male Sprague-Dawley rats were experimentally wounded in the posterior neck area. A uniform wound area of 2.00 cm in diameter, using a circular stamp, was excised from the nape of the dorsal neck of all rats with the aid of a round seal. The animal groups were topically treated, respectively, with 0.2 mL each of sterilized distilled water (sdH2O); Intrasite gel; and 20, 30, and 40 mg/mL HEFB. Macroscopically, those rats whose wounds were dressed with HEFB and those in the Intrasite gel-treated group healed earlier than those treated with sdH2O. Histological analysis of healed wounds dressed with HEFB showed less scar width at wound enclosure and the healed wound contained fewer macrophages and more collagen with angiogenesis, compared to wounds dressed with sdH2O. In conclusion, wounds dressed with HEFB significantly enhanced the acceleration of wound healing enclosure in rats.
    Matched MeSH terms: Basidiomycota/chemistry*
  11. Ramli AN, Mahadi NM, Rabu A, Murad AM, Bakar FD, Illias RM
    Microb Cell Fact, 2011;10:94.
    PMID: 22050784 DOI: 10.1186/1475-2859-10-94
    Cold-adapted enzymes are proteins produced by psychrophilic organisms that display a high catalytic efficiency at extremely low temperatures. Chitin consists of the insoluble homopolysaccharide β-(1, 4)-linked N-acetylglucosamine, which is the second most abundant biopolymer found in nature. Chitinases (EC 3.2.1.14) play an important role in chitin recycling in nature. Biodegradation of chitin by the action of cold-adapted chitinases offers significant advantages in industrial applications such as the treatment of chitin-rich waste at low temperatures, the biocontrol of phytopathogens in cold environments and the biocontrol of microbial spoilage of refrigerated food.
    Matched MeSH terms: Basidiomycota/chemistry
  12. Lakshmanan H, Raman J, David P, Wong KH, Naidu M, Sabaratnam V
    J Ethnopharmacol, 2016 Dec 24;194:1051-1059.
    PMID: 27816657 DOI: 10.1016/j.jep.2016.10.084
    ETHNOPHARMACOLOGICAL RELEVANCE: Hericium erinaceus is a culinary-medicinal mushroom and has a long history of usage in traditional Chinese medicine as a tonic for stomach disorders, ulcers and gastrointestinal ailments.

    AIM OF THE STUDY: The present investigation was aimed to evaluate the potential toxic effects of the aqueous extract from the fruiting bodies of H. erinaceus in rats by a sub-chronic oral toxicity study.

    MATERIALS AND METHODS: In this sub-chronic toxicity study, rats were orally administered with the aqueous extract of H. erinaceus (HEAE) at doses of 250, 500 and 1000mg/kg body weight (b.w.) for 90 days. Body weights were recorded on a weekly basis and general behavioural changes were observed. The blood samples were subjected to haematological, biochemical, serum electrolyte, and antioxidant enzyme estimations. The rats were sacrificed and organs were processed and examined for histopathological changes.

    RESULTS: No mortality or morbidity was observed in all the treated and control rats. The results showed that the oral administration of HEAE daily at three different doses for 90 days had no adverse effect on the general behaviour, body weight, haematology, clinical biochemistry, and relative organ weights. Histopathological examination at the end of the study showed normal architecture except for few non-treatment related histopathological changes observed in liver, heart and spleen.

    CONCLUSION: The results of this sub-chronic toxicity study provides evidence that oral administration of HEAE is safe up to 1000mg/kg and H. erinaceus consumption is relatively non-toxic.

    Matched MeSH terms: Basidiomycota/chemistry*
  13. Ramli AN, Azhar MA, Shamsir MS, Rabu A, Murad AM, Mahadi NM, et al.
    J Mol Model, 2013 Aug;19(8):3369-83.
    PMID: 23686283 DOI: 10.1007/s00894-013-1861-5
    A novel α-amylase was isolated successfully from Glaciozyma antarctica PI12 using DNA walking and reverse transcription-polymerase chain reaction (RT-PCR) methods. The structure of this psychrophilic α-amylase (AmyPI12) from G. antarctica PI12 has yet to be studied in detail. A 3D model of AmyPI12 was built using a homology modelling approach to search for a suitable template and to generate an optimum target-template alignment, followed by model building using MODELLER9.9. Analysis of the AmyPI12 model revealed the presence of binding sites for a conserved calcium ion (CaI), non-conserved calcium ions (CaII and CaIII) and a sodium ion (Na). Compared with its template-the thermostable α-amylase from Bacillus stearothermophilus (BSTA)-the binding of CaII, CaIII and Na ions in AmyPI12 was observed to be looser, which suggests that the low stability of AmyPI12 allows the protein to work at different temperature scales. The AmyPI12 amino acid sequence and model were compared with thermophilic α-amylases from Bacillus species that provided the highest structural similarities with AmyPI12. These comparative studies will enable identification of possible determinants of cold adaptation.
    Matched MeSH terms: Basidiomycota/chemistry*
  14. Saad HM, Sim KS, Tan YS
    Int J Med Mushrooms, 2018;20(2):141-153.
    PMID: 29773006 DOI: 10.1615/IntJMedMushrooms.2018025463
    Five culinary-medicinal mushrooms are commonly available in the Malaysian market: Agaricus bisporus (white and brown), Ganoderma lucidum, Hypsizygus marmoreus, Pleurotus floridanus, and P. pulmonarius. These species were selected for use in the current study, the aim of which was to investigate the antimelanogenesis and anti-inflammatory activity of these mushrooms in an attempt to evaluate their potential use in cosmeceuticals. Mushroom fruiting bodies were extracted with hot water, and the extracts were freeze-dried before testing. The antimelanogenesis activity of the extracts was determined by cell viability assay, measurement of intracellular melanin content, and cellular tyrosinase assay with B16F10 melanoma cells. The anti-inflammatory activity of the mushroom extracts was tested by measuring the levels of nitric oxide (NO), tumor necrosis factor (TNF)-α, and interleukin-10 excreted by RAW264.7 macrophages. Brown A. bisporus reduced intracellular melanin content to the largest extent-up to 57.05 ± 3.90%-without a cytotoxic effect on B16F10 melanoma cells. This extract also reduced cellular tyrosinase activity to 17.93 ± 2.65%, performing better than kojic acid, the positive control. In parallel, the extract from brown A. bisporus, at the highest concentration tested, has appreciable anti-inflammatory activity through reductions of NO and TNF-α levels. The other 5 extracts showed moderate antimelanogenesis and anti-inflammatory activities. In summary, our findings show that A. bisporus (brown) extract has the potential to be used as an ingredient in whitening skincare products and to sooth the inflammatory response on the skin.
    Matched MeSH terms: Basidiomycota/chemistry
  15. Gao X, Santhanam RK, Xue Z, Jia Y, Wang Y, Lu Y, et al.
    J Food Sci, 2020 Apr;85(4):1060-1069.
    PMID: 32147838 DOI: 10.1111/1750-3841.15084
    Inonotus obliquus is a traditional mushroom well known for its therapeutic value. In this study, various solvent fractions of I. obliquus were preliminarily screened for their antioxidant, α-amylase and α-glucosidase inhibition properties. To improve the drug delivery, the active fraction (ethyl acetate fraction) of I. obliquus was synthesized into fungisome (ethyl acetate phophotidyl choline complex, EAPC) and its physical parameters were assessed using Fourier transform infrared spectroscopy (FTIR), High performance liquid chromatography (HPLC), Scanning electron microscope (SEM), and ς potential analysis. Then normal human hepatic L02 cells was used to evaluate the cytotoxicity of EAPC. The results showed that EA fraction possesses significant free radical scavenging, α-amylase and α-glucosidase inhibition properties. FTIR, SEM, and HPLC analysis confirmed the fungisome formation. The particle size of EAPC was 102.80 ± 0.42 nm and the ς potential was -54.30 ± 0.61 mV. The percentage of drug entrapment efficiency was 97.13% and the drug release rates of EAPC in simulated gastric fluid and simulated intestinal fluid were 75.04 ± 0.29% and 93.03 ± 0.36%, respectively. EAPC was nontoxic to L02 cells, however it could selectively fight against the H2 O2 induced oxidative damage in L02 cells. This is the first study to provide scientific information to utilize the active fraction of I. obliquus as fungisome. PRACTICAL APPLICATIONS: Inonotus obliquus (IO) is a traditional medicinal fungus. The extracts of IO have obvious antioxidant and hypoglycemic activities. Ethyl acetate (EA) fraction of IO was encapsulated in liposomes to form EAPC. EAPC has a sustained-release effect. It has nontoxic to L02 cells and could protect L02 cells from oxidative damage caused by hydrogen peroxide. This study could provide new ideas for the treatment of diabetes.
    Matched MeSH terms: Basidiomycota/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links