Displaying all 3 publications

Abstract:
Sort:
  1. Hamzah HH, Yusof NA, Salleh AB, Bakar FA
    Sensors (Basel), 2011;11(8):7302-13.
    PMID: 22164018 DOI: 10.3390/s110807302
    Fabrication of a test strip for detection of benzoic acid was successfully implemented by immobilizing tyrosinase, phenol and 3-methyl-2-benzothiazolinone hydrazone (MBTH) onto filter paper using polystyrene as polymeric support. The sensing scheme was based on the decreasing intensity of the maroon colour of the test strip when introduced into benzoic acid solution. The test strip was characterized using optical fiber reflectance and has maximum reflectance at 375 nm. It has shown a highly reproducible measurement of benzoic acid with a calculated RSD of 0.47% (n = 10). The detection was optimized at pH 7. A linear response of the biosensor was obtained in 100 to 700 ppm of benzoic acid with a detection limit (LOD) of 73.6 ppm. At 1:1 ratio of benzoic acid to interfering substances, the main interfering substance is boric acid. The kinetic analyses show that, the inhibition of benzoic is competitive inhibitor and the inhibition constant (K(i)) is 52.9 ppm. The activity of immobilized tyrosinase, phenol, and MBTH in the test strip was fairly sustained during 20 days when stored at 3 °C. The developed test strip was used for detection of benzoic acid in food samples and was observed to have comparable results to the HPLC method, hence the developed test strip can be used as an alternative to HPLC in detecting benzoic acid in food products.
    Matched MeSH terms: Benzoic Acid/analysis*
  2. Saad B, Bari MF, Saleh MI, Ahmad K, Talib MK
    J Chromatogr A, 2005 May 06;1073(1-2):393-7.
    PMID: 15909546
    A reversed-phased HPLC method that allows the separation and simultaneous determination of the preservatives benzoic (BA) and sorbic acids (SA), methyl- (MP) and propylparabens (PP) is described. The separations were effected by using an initial mobile phase of methanol-acetate buffer (pH 4.4) (35:65) to elute BA, SA and MP and changing the mobile phase composition to methanol-acetate buffer (pH 4.4) (50:50) thereafter. The detector wavelength was set at 254 nm. Under these conditions, separation of the four components was achieved in less than 23 min. Analytical characteristics of the separation such as limit of detection, limit of quantification, linear range and reproducibility were evaluated. The developed method was applied to the determination of 67 foodstuffs (mainly imported), comprising soft drinks, jams, sauces, canned fruits/vegetables, dried vegetables/fruits and others. The range of preservatives found were from not detected (nd)--1260, nd--1390, nd--44.8 and nd--221 mg kg(-1) for BA, SA, MP and PP, respectively.
    Matched MeSH terms: Benzoic Acid/analysis*
  3. Zaini NA, Harith HH, Olusesan AT, Zulkifli AH, Bakar FA, Osman A, et al.
    J Food Prot, 2010 Mar;73(3):541-6.
    PMID: 20202342
    The objective of this study was to determine the level of preservatives and microbiological loads in various brands of commercially available chili bo (paste). Fifteen different brands of chili bo obtained from the local market and hypermarkets were analyzed for pH, moisture and benzoic acid content, microbiological loads (aerobic, anaerobic, aerobic spores, and fungi), and thermophilic microorganisms. Results showed that both moisture content and pH vary among samples. The concentrations of benzoic acid detected in chili bo were found to be in the range of 537 to 5,435 mg/kg. Nine of fifteen brands were found to exceed the maximum level permitted by the Malaysian Food Law in accordance with the Codex Alimentarius (1,000 mg/kg for benzoic acid). An apparent correlation between benzoic acid concentration and microbiological loads present in the chili bo was observed. The microbiological loads were found to be relatively low in the end products containing high amounts of benzoic acid. The heat-resistant (70 to 80 degrees C) microorganisms present in chili bo were identified as Ochrobacterum tritici, Stenotrophomonas rhizophila, Microbacterium maritypicum, Roseomonas spp., CDC group II-E subgroup A, Flavimonas oryzihabitans, and Pseudomonas aeruginosa, with M. maritypicum being the most frequently found (in 9 of 15 samples) microorganism. Most of these identified microorganisms were not known to cause foodborne illnesses.
    Matched MeSH terms: Benzoic Acid/analysis
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links