A new microextraction procedure termed multi-walled carbon nanotube-impregnated agarose film microextraction (MWCNT-AFME) has been developed. The method utilized multi-walled carbon nanotubes (MWCNTs) immobilized in agarose film to serve as adsorbent in solid phase microextraction (SPME). The film was prepared by mixing the MWCNTs in agarose solution and drying the mixture in oven. Extraction of selected polycyclic aromatic hydrocarbons was performed by inserting a needle through circular MWCNT-impregnated agarose films (5 mm diameter) and the assembly was dipped into an agitated sample solution prior to micro high performance liquid chromatography-ultraviolet analysis. Back extraction was then performed using ultrasonication of the films in 100 μL of solvent. The film was discarded after single use, thus avoiding any analyte carry-over effect. Due to the mesoporous nature of the agarose film, the MWCNTs were immobilized easily within the film and thus allowing for close contact between adsorbent and analytes. Under the optimized extraction conditions, the technique achieved trace LODs in the range of 0.1 to 50 ng L(-1) for the targeted analytes, namely fluoranthene, phenanthrene and benzo[a]pyrene. The method was successfully applied to the analysis of spiked green tea beverage samples with good relative recoveries in the range of 91.1 to 107.2%. The results supported the feasibility of agarose to serve as adsorbent holder in SPME which then minimizes the consumption of chemicals and disposal cost of organic wastes.
In our systematic screening programme for marine actinomycetes, a bioactive Streptomycete was isolated from marine sediment samples of Bay of Bengal, India. The taxonomic studies indicated that the isolate belongs to Streptomyces chibaensis and it was designated as S. chibaensis AUBN1/7. The isolate yielded a cytotoxic compound. It was obtained by solvent extraction followed by the chromatographic purification. Based on the spectral data of the pure compound, it was identified as quinone-related antibiotic, resistoflavine (1). It showed a potent cytotoxic activity against cell lines viz. HMO2 (Gastric adenocarcinoma) and HePG2 (Hepatic carcinoma) in vitro and also exhibited weak antibacterial activities against Gram-positive and Gram-negative bacteria.