Displaying all 4 publications

Abstract:
Sort:
  1. Looi QH, Amin H, Aini I, Zuki M, Omar AR
    BMC Genomics, 2017 07 03;18(1):504.
    PMID: 28673247 DOI: 10.1186/s12864-017-3861-9
    BACKGROUND: Edible bird's nest (EBN), produced from solidified saliva secretions of specific swiftlet species during the breeding season, is one of the most valuable animal by-products in the world. The composition and medicinal benefits of EBN have been extensively studied, however, genomic and transcriptomic studies of the salivary glands of these birds have not been conducted.

    RESULTS: The study described the transcriptomes of salivary glands from three swiftlet species (28 samples) generated by RNASeq. A total of 14,835 annotated genes and 428 unmapped genes were cataloged. The current study investigated the genes and pathways that are associated with the development of salivary gland and EBN composition. Differential expression and pathway enrichment analysis indicated that the expression of CREB3L2 and several signaling pathways involved in salivary gland development, namely, the EGFR, BMP, and MAPK signaling pathways, were up-regulated in swiftlets producing white EBN (Aerodramus fuciphagus) and black EBN (Aerodramus maximus) compared with non-EBN-producing swiftlets (Apus affinis). Furthermore, MGAT, an essential gene for the biosynthesis of N-acetylneuraminic acid (sialic acid), was highly expressed in both white- and black-nest swiftlets compared to non-EBN-producing swiftlets. Interspecies comparison between Aerodramus fuciphagus and Aerodramus maximus indicated that the genes involved in N-acetylneuraminic and fatty acid synthesis were up-regulated in Aerodramus fuciphagus, while alanine and aspartate synthesis pathways were up-regulated in Aerodramus maximus. Furthermore, gender-based analysis revealed that N-glycan trimming pathway was significantly up-regulated in male Aerodramus fuciphagus from its natural habitat (cave) compared to their female counterpart.

    CONCLUSIONS: Transcriptomic analysis of salivary glands of different swiftlet species reveal differential expressions of candidate genes that are involved in salivary gland development and in the biosynthesis of various bioactive compounds found in EBN.

    Matched MeSH terms: Birds/metabolism*
  2. Balasubramaniam VR, Hassan SS, Omar AR, Mohamed M, Noor SM, Mohamed R, et al.
    Virol J, 2011;8:196.
    PMID: 21529348 DOI: 10.1186/1743-422X-8-196
    Highly pathogenic Avian Influenza (HPAI) virus is able to infect many hosts and the virus replicates in high levels in the respiratory tract inducing severe lung lesions. The pathogenesis of the disease is actually the outcome of the infection as determined by complex host-virus interactions involving the functional kinetics of large numbers of participating genes. Understanding the genes and proteins involved in host cellular responses are therefore, critical for the elucidation of the mechanisms of infection.
    Matched MeSH terms: Influenza in Birds/metabolism
  3. Yew MY, Koh RY, Chye SM, Othman I, Ng KY
    PMID: 25308934 DOI: 10.1186/1472-6882-14-391
    Parkinson's disease (PD) is the second most common neurodegenerative disorder affecting the senile population with manifestation of motor disability and cognitive impairment. Reactive oxygen species (ROS) is implicated in the progression of oxidative stress-related apoptosis and cell death of the midbrain dopaminergic neurons. Its interplay with mitochondrial functionality constitutes an important aspect of neuronal survival in the perspective of PD. Edible bird's nest (EBN) is an animal-derived natural food product made of saliva secreted by swiftlets from the Aerodamus genus. It contains bioactive compounds which might confer neuroprotective effects to the neurons. Hence this study aims to investigate the neuroprotective effect of EBN extracts in the neurotoxin-induced in vitro PD model.
    Matched MeSH terms: Birds/metabolism*
  4. Chua KH, Lee TH, Nagandran K, Md Yahaya NH, Lee CT, Tjih ET, et al.
    PMID: 23339380 DOI: 10.1186/1472-6882-13-19
    Osteoarthritis (OA) is a degenerative joint disease that results in the destruction of cartilage. Edible Bird's Nest (EBN) extract contains important components, which can reduce the progression of osteoarthritis and helps in the regeneration of the cartilage. The present study aimed to investigate the effect of EBN extract on the catabolic and anabolic activities of the human articular chondrocytes (HACs) isolated from the knee joint of patients with OA.
    Matched MeSH terms: Birds/metabolism*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links