Displaying all 2 publications

Abstract:
Sort:
  1. Hamli H, Idris MH, Abu Hena MK, Rajaee AH, Arshad A
    J Environ Biol, 2016 07;37(4 Spec No):641-6.
    PMID: 28779722
    The morphology and 12 shell morphometric features proportionate to shell length were analysed between local hard clam; Meretrix lyrata, M. meretrix and M. lusoria from Sarawak, Malaysia. Meretrix spp. was observed to comprise a unique feature of a pallial sinus scar for each species. Analysis of variance revealed significant differences among Meretrix spp. using proportion ratios of SL for SW; LL; AL; LCT; AW; PW and PS (p<0.05). Cluster analysis among morphometric features of M. lyrata, M. meretrix and M. lusoria were discriminated at 98.5% similarities and supported by the principal component analysis. The present study suggests that pallial sinus scar shape, together with interior and exterior morphometric features, were suitable as identification keys for Meretrix spp. Hence, the present study emphasizes on the application of interior, rather than exterior morphology and morphometric features in hard clam identification before further investigation can be performed through genetic identification means.
    Matched MeSH terms: Bivalvia/anatomy & histology
  2. Jalil AA, Triwahyono S, Yaakob MR, Azmi ZZ, Sapawe N, Kamarudin NH, et al.
    Bioresour Technol, 2012 Sep;120:218-24.
    PMID: 22820110 DOI: 10.1016/j.biortech.2012.06.066
    In this work, two low-cost wastes, bivalve shell (BS) and Zea mays L. husk leaf (ZHL), were investigated to adsorb malachite green (MG) from aqueous solutions. The ZHL was treated with calcined BS to give the BS-ZHL, and its ability to adsorb MG was compared with untreated ZHL, calcined BS and Ca(OH)(2)-treated ZHL under several different conditions: pH (2-8), adsorbent dosage (0.25-2.5 g L(-1)), contact time (10-30 min), initial MG concentration (10-200 mg L(-1)) and temperature (303-323 K). The equilibrium studies indicated that the experimental data were in agreement with the Langmuir isotherm model. The use of 2.5 g L(-1) BS-ZHL resulted in the nearly complete removal of 200 mg L(-1) of MG with a maximum adsorption capacity of 81.5 mg g(-1) after 30 min of contact time at pH 6 and 323 K. The results indicated that the BS-ZHL can be used to effectively remove MG from aqueous media.
    Matched MeSH terms: Bivalvia/anatomy & histology*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links