Displaying all 4 publications

Abstract:
Sort:
  1. Suresh K, Mak JW, Chuong LS, Ragunathan T, Init I
    Parasitol Res, 1997;83(6):523-5.
    PMID: 9211501
    Matched MeSH terms: Blastocystis/ultrastructure*
  2. Ragavan ND, Govind SK, Chye TT, Mahadeva S
    Parasit Vectors, 2014;7:404.
    PMID: 25174569 DOI: 10.1186/1756-3305-7-404
    Blastocystis, is one of the most common human intestinal protozoan, which has many conflicting reports on its pathogenic role. Gut conditions which obviously varies in asymptomatic individuals, symptomatic and irritable bowel syndrome (IBS) patients in terms of gut flora, pH, osmotic pressure and water potentials could play an important role in its pathogenicity. The present study is the first study to investigate phenotypic characteristics of Blastocystis sp. ST3 isolated from asymptomatic, symptomatic and IBS isolates.
    Matched MeSH terms: Blastocystis/ultrastructure*
  3. Thergarajan G, Govind SK, Bhassu S
    Parasitol Res, 2018 Jan;117(1):177-187.
    PMID: 29188368 DOI: 10.1007/s00436-017-5688-3
    Blastocystis sp. is known to be the most commonly found intestinal protozoan parasite in human fecal surveys and has been incriminated to cause diarrhea and abdominal bloating. Binary fission has been widely accepted as the plausible mode of reproduction for this parasite. The present study demonstrates that subjecting the parasites in vitro to higher temperature shows the proliferation of parasite numbers in cultures. Transmission electron microscopy was used to compare the morphology of Blastocystis sp. subtype 3 isolated from a dengue patient having high fever (in vivo thermal stress) and Blastocystis sp. 3 maintained at 41 °C (in vitro thermal stress) and 37 °C (control). Fluorescence stains like acridine orange (AO) and 4',6'-diamino-2-phenylindole (DAPI) were used to demonstrate the viability and nuclear content of the parasite for both the in vitro and in vivo thermal stress groups of parasites. Blastocystis sp. at 37 °C was found to be mostly vacuolar whereas the in vitro thermal stressed isolates at 41 °C were granular with electron dense material seen to protect the granules within the central body. Parasites of the in vivo thermal stressed group showed similar ultrastructure as the in vitro ones. AO and DAPI staining provided evidence that these granules are viable which develop into progenies of Blastocystis sp. These granular forms were then observed to rupture and release progenies from the mother cells whilst the peripheral cytoplasmic walls were seen to degrade. Upon exposure to high temperature both in vitro and in vivo, Blastocystis sp. in cultures show higher number of granular forms seen to be protected by the electron dense material within the central body possibly acting as a protective mechanism. This is possibly to ensure the ability to survive for the granules to be developed as viable progenies for release into the host system.
    Matched MeSH terms: Blastocystis/ultrastructure
  4. Raman K, Kumar S, Chye TT
    Parasitol Res, 2016 Jan;115(1):391-6.
    PMID: 26481491 DOI: 10.1007/s00436-015-4760-0
    Blastocystis sp., an intestinal organism is known to cause diarrhea with metronidazole regarded as the first line of treatment despite reports of its resistance. The conflicting reports of variation in drug treatment have been ascribed to subtype differences. The present study evaluated in vitro responses due to metronidazole on ST3 isolated from three symptomatic and asymptomatic patients, respectively. Symptomatic isolates were obtained from clinical patients who showed symptoms such as diarrhea and abdominal bloating. Asymptomatic isolates from a stool survey carried out in a rural area. These patients had no other pathogens other than Blastocystis. Ultrastructural studies using transmission electron microscopy (TEM) and scanning electron microscopy (SEM) revealed drug-treated ST3 from symptomatic patients were irregular and amoebic with surface showing high-convoluted folding when treated with metronidazole. These organisms had higher number of mitochondrion-like organelle (MLO) with prominent cristae. However, the drug-treated ST3 from asymptomatic persons remained spherical in shape. Asymptomatic ST3 showed increase in the size of its central body with the MLO located at the periphery.
    Matched MeSH terms: Blastocystis/ultrastructure
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links