Regression testing is crucial in ensuring that modifications made did not introduce any adverse effect on the software being modified. However, regression testing suffers from execution cost and time consumption problems. Test case prioritization (TCP) is one of the techniques used to overcome these issues by re-ordering test cases based on their priorities. Model-based TCP (MB-TCP) is an approach in TCP where the software models are manipulated to perform prioritization. The issue with MB-TCP is that most of the existing approaches do not provide satisfactory faults detection capability. Besides, their granularity of test selection criteria is not very good and this can affect prioritization effectiveness. This study proposes an MB-TCP approach that can improve the faults detection performance of regression testing. It combines the implementation of two existing approaches from the literature while incorporating an additional ordering criterion to boost prioritization efficacy. A detailed empirical study is conducted with the aim to evaluate and compare the performance of the proposed approach with the selected existing approaches from the literature using the average of the percentage of faults detected (APFD) metric. Three web applications were used as the objects of study to obtain the required test suites that contained the tests to be prioritized. From the result obtained, the proposed approach yields the highest APFD values over other existing approaches which are 91%, 86% and 91% respectively for the three web applications. These higher APFD values signify that the proposed approach is very effective in revealing faults early during testing. They also show that the proposed approach can improve the faults detection performance of regression testing.
The main objective of the present study was to evaluate the temperature chain of red blood cells (RBC) returned unused blood bags using blood temperature indicator and ascertain the factors like transportation time, type, size of coolant box and number of bags per box.
Hemovigilance like quality systems and audits has become an integral part of the Blood Transfusion Service (BTS) in the developed world and has contributed greatly to the development of the blood service. However developing countries are still grappling with donor recruitment and efforts towards sufficiency and safety of the blood supply. In these countries the BTS is generally fragmented and a national hemovigilance program would be difficult to implement. However a few developing countries have an effective and sustainable blood program that can deliver equitable, safe and sufficient blood supply to the nation. Different models of hemovigilance program have been introduced with variable success. There are deficiencies but the data collected provided important information that can be presented to the health authorities for effective interventions. Hemovigilance program modeled from developed countries require expertise and resources that are not available in many developing countries. Whatever resources that are available should be utilized to correct deficiencies that are already apparent and obvious. Besides there are other tools that can be used to monitor the blood program in the developing countries depending on the need and the resources available. More importantly the data collected should be accurate and are used and taken into consideration in formulating guidelines, standards and policies and to affect appropriate interventions. Any surveillance program should be introduced in a stepwise manner as the blood transfusion service develops.