The geometry of reactor core, thermal column, collimator and shielding system for BNCT application of TRIGA MARK II REACTOR were simulated with MCNP5 code. Neutron particle lethargy and dose were calculated with MCNPX code. Neutron flux in a sample located at the end of collimator after normalized to measured value (Eid Mahmoud Eid Abdel Munem, 2007) at 1 MW power was 1.06E8 n/cm2/s. According to IAEA (2001) flux of 1.00E9 n/cm2/s requires three hours of treatment. Few modifications were needed to get higher flux.
Determination of thermal to fast neutron flux ratio (f(fast)) and fast neutron flux (ϕ(fast)) is required for fast neutron reactions, fast neutron activation analysis, and for correcting interference reactions. The f(fast) and subsequently ϕ(fast) were determined using the absolute method. The f(fast) ranged from 48 to 155, and the ϕ(fast) was found in the range 1.03×10(10)-4.89×10(10) n cm(-2) s(-1). These values indicate an acceptable conformity and applicable for installation of the fast neutron facility at the MNA research reactor.
This work main aim is to study the analysis of slow neutrons which include thermal and
epithermal neutrons and also analysis on fast neutrons. The outcome from this work showed that
the comparison result between fast and slow neutrons. The safety assessment at reactor TRIGA
FUSFATI (RTF) is one of the main objectives of the work and there is a detailed discussion on it
which helped in accomplishing the task. Gamma Rays produced in this experiment was high and in
the experiment and it is realized that the shielding plays a vital role in the success of this
experiment which prevents all the radiations. From the results of the experiment it is realized that
these gamma rays are not suitable for the application of Boron Neutron Capture Therapy
(BNCT). However, these radiations are suitable for the application of Neutron Radiography (NR).
The study on this work will help in study of nuclear applications such as BNCT, NR, SANS etc.
These applications are using in medical and nuclear fields. The electronic device used in the
experiment to detect neutron is Neutron Spectrometer. The results from Neutron Spectrometer
and TLDs are very similar which showed that the experiment is a success. Numerical results were
compared with those available in literature for validation.
Thermal neutron beam from thermal column was selected for a Boron Neutron Capture Therapy
(BNCT) system utilizing the Malaysian TRIGA MARK II reactor. Determination of shielding
materials for fast and epithermal neutron was conducted. The materials selected were polyethylene,
paraffin and water. For gamma-ray shielding, lead was used. The objective of this paper is to present
the simulation and verification of an optimal design of BNCT collimation at a beam. line viewing the
thermal column. A collimator was made from polyethylene pipe with 8 cm of diameter filled with
paraffin.
The shortcomings in Boron neutron capture therapy (BNCT) and Hyperthermia for killing the tumor cell desired for the synthesis of a new kind of material suitable to be first used in BNCT and later on enable the conditions for Hyperthermia to destroy the tumor cell. The desire led to the synthesis of large band gap semiconductor nano-size Boron-10 enriched crystals of hexagonal boron nitride (10BNNCs). The contents of 10BNNCs are analyzed with the help of x-ray photoelectron spectroscopy (XPS) and counter checked with Raman and XRD. The 10B-contents in 10BNNCs produce 7Li and 4He nuclei. A Part of the 7Li and 4He particles released in the cell is allowed to kill the tumor (via BNCT) whereas the rest produce electron-hole pairs in the semiconductor layer of 10BNNCs suggested to work in Hyperthermia with an externally applied field.