Displaying all 8 publications

Abstract:
Sort:
  1. Seow P, Narayanan V, Hernowo AT, Wong JHD, Ramli N
    Neuroimage Clin, 2018;20:531-536.
    PMID: 30167373 DOI: 10.1016/j.nicl.2018.08.003
    Objectives: This study maps the lipid distributions based on magnetic resonance imaging (MRI) in-and opposed-phase (IOP) sequence and correlates the findings generated from lipid map to histological grading of glioma.

    Methods: Forty histologically proven glioma patients underwent a standard MRI tumour protocol with the addition of IOP sequence. The regions of tumour (solid enhancing, solid non-enhancing, and cystic regions) were delineated using snake model (ITK-SNAP) with reference to structural and diffusion MRI images. The lipid distribution map was constructed based on signal loss ratio (SLR) obtained from the IOP imaging. The mean SLR values of the regions were computed and compared across the different glioma grades.

    Results: The solid enhancing region of glioma had the highest SLR for both Grade II and III. The mean SLR of solid non-enhancing region of tumour demonstrated statistically significant difference between the WHO grades (grades II, III & IV) (mean SLRII = 0.04, mean SLRIII = 0.06, mean SLRIV = 0.08, & p 

    Matched MeSH terms: Brain Neoplasms/metabolism
  2. Hassn Mesrati M, Behrooz AB, Y Abuhamad A, Syahir A
    Cells, 2020 05 16;9(5).
    PMID: 32429463 DOI: 10.3390/cells9051236
    Gliomas are the most frequent and deadly form of human primary brain tumors. Among them, the most common and aggressive type is the high-grade glioblastoma multiforme (GBM), which rapidly grows and renders patients a very poor prognosis. Meanwhile, cancer stem cells (CSCs) have been determined in gliomas and play vital roles in driving tumor growth due to their competency in self-renewal and proliferation. Studies of gliomas have recognized CSCs via specific markers. This review comprehensively examines the current knowledge of the most significant CSCs markers in gliomas in general and in glioblastoma in particular and specifically focuses on their outlook and importance in gliomas CSCs research. We suggest that CSCs should be the superior therapeutic approach by directly targeting the markers. In addition, we highlight the association of these markers with each other in relation to their cascading pathways, and interactions with functional miRNAs, providing the role of the networks axes in glioblastoma signaling pathways.
    Matched MeSH terms: Brain Neoplasms/metabolism*
  3. Alomari YM, Sheikh Abdullah SN, MdZin RR, Omar K
    Comput Math Methods Med, 2015;2015:673658.
    PMID: 25793010 DOI: 10.1155/2015/673658
    Analysis of whole-slide tissue for digital pathology images has been clinically approved to provide a second opinion to pathologists. Localization of focus points from Ki-67-stained histopathology whole-slide tissue microscopic images is considered the first step in the process of proliferation rate estimation. Pathologists use eye pooling or eagle-view techniques to localize the highly stained cell-concentrated regions from the whole slide under microscope, which is called focus-point regions. This procedure leads to a high variety of interpersonal observations and time consuming, tedious work and causes inaccurate findings. The localization of focus-point regions can be addressed as a clustering problem. This paper aims to automate the localization of focus-point regions from whole-slide images using the random patch probabilistic density method. Unlike other clustering methods, random patch probabilistic density method can adaptively localize focus-point regions without predetermining the number of clusters. The proposed method was compared with the k-means and fuzzy c-means clustering methods. Our proposed method achieves a good performance, when the results were evaluated by three expert pathologists. The proposed method achieves an average false-positive rate of 0.84% for the focus-point region localization error. Moreover, regarding RPPD used to localize tissue from whole-slide images, 228 whole-slide images have been tested; 97.3% localization accuracy was achieved.
    Matched MeSH terms: Brain Neoplasms/metabolism*
  4. Choudhury H, Pandey M, Chin PX, Phang YL, Cheah JY, Ooi SC, et al.
    Drug Deliv Transl Res, 2018 10;8(5):1545-1563.
    PMID: 29916012 DOI: 10.1007/s13346-018-0552-2
    Treatment of glioblastoma multiforme (GBM) is a predominant challenge in chemotherapy due to the existence of blood-brain barrier (BBB) which restricts delivery of chemotherapeutic agents to the brain together with the problem of drug penetration through hard parenchyma of the GBM. With the structural and mechanistic elucidation of the BBB under both physiological and pathological conditions, it is now viable to target central nervous system (CNS) disorders utilizing the presence of transferrin (Tf) receptors (TfRs). However, overexpression of these TfRs on the GBM cell surface can also help to avoid restrictions of GBM cells to deliver chemotherapeutic agents within the tumor. Therefore, targeting of TfR-mediated delivery could counteract drug delivery issues in GBM and create a delivery system that could cross the BBB effectively to utilize ligand-conjugated drug complexes through receptor-mediated transcytosis. Hence, approach towards successful delivery of antitumor agents to the gliomas has been making possible through targeting these overexpressed TfRs within the CNS and glioma cells. This review article presents a thorough analysis of current understanding on Tf-conjugated nanocarriers as efficient drug delivery system.
    Matched MeSH terms: Brain Neoplasms/metabolism
  5. Gupta G, Singhvi G, Chellappan DK, Sharma S, Mishra A, Dahiya R, et al.
    Panminerva Med, 2018 Sep;60(3):109-116.
    PMID: 30176701 DOI: 10.23736/S0031-0808.18.03462-6
    Glioblastoma, also known as glioblastoma multiforme, is the most common and worldwide-spread cancer that begins within the brain. Glioblastomas represent 15% of brain tumors. The most common length of survival following diagnosis is 12 to 14 months with less than 3% to 5% of people surviving longer than five years. Without treatment, survival is typically 3 months. Among all receptors, special attention has been focused on the role of peroxisome proliferator-activated receptors (PPARs) in glioblastoma. PPARs are ligand-activated intracellular transcription factors. The PPAR subfamily consists of three subtypes encoded by distinct genes named PPARα, PPARβ/δ, and PPARγ. PPARγ is the most extensively studied subtype of PPAR. There has been interesting preliminary evidence suggesting that diabetic patients receiving PPARγ agonists, a group of anti-diabetics, thiazolidinedione drugs, have an increased median survival for glioblastoma. In this paper, the recent progresses in understanding the potential mechanism of PPARγ in glioblastoma are summarized.
    Matched MeSH terms: Brain Neoplasms/metabolism
  6. Vasaikar S, Tsipras G, Landázuri N, Costa H, Wilhelmi V, Scicluna P, et al.
    BMC Cancer, 2018 02 06;18(1):154.
    PMID: 29409474 DOI: 10.1186/s12885-018-4012-7
    BACKGROUND: Glioblastoma (GBM) is the most common malignant brain tumor with median survival of 12-15 months. Owing to uncertainty in clinical outcome, additional prognostic marker(s) apart from existing markers are needed. Since overexpression of endothelin B receptor (ETBR) has been demonstrated in gliomas, we aimed to test whether ETBR is a useful prognostic marker in GBM and examine if the clinically available endothelin receptor antagonists (ERA) could be useful in the disease treatment.

    METHODS: Data from The Cancer Genome Atlas and the Gene Expression Omnibus database were analyzed to assess ETBR expression. For survival analysis, glioblastoma samples from 25 Swedish patients were immunostained for ETBR, and the findings were correlated with clinical history. The druggability of ETBR was assessed by protein-protein interaction network analysis. ERAs were analyzed for toxicity in in vitro assays with GBM and breast cancer cells.

    RESULTS: By bioinformatics analysis, ETBR was found to be upregulated in glioblastoma patients, and its expression levels were correlated with reduced survival. ETBR interacts with key proteins involved in cancer pathogenesis, suggesting it as a druggable target. In vitro viability assays showed that ERAs may hold promise to treat glioblastoma and breast cancer.

    CONCLUSIONS: ETBR is overexpressed in glioblastoma and other cancers and may be a prognostic marker in glioblastoma. ERAs may be useful for treating cancer patients.

    Matched MeSH terms: Brain Neoplasms/metabolism
  7. Khan MS, Majid AM, Iqbal MA, Majid AS, Al-Mansoub M, Haque RS
    Eur J Pharm Sci, 2016 Oct 10;93:304-18.
    PMID: 27552907 DOI: 10.1016/j.ejps.2016.08.032
    Glioblastoma multiforme is a highly malignant, heterogenic, and drug resistant tumor. The blood-brain barrier (BBB), systemic cytotoxicity, and limited specificity are the main obstacles in designing brain tumor drugs. In this study a computational approach was used to design brain tumor drugs that could downregulate VEGF and IL17A in glioblastoma multiforme type four. Computational screening tools were used to evaluate potential candidates for antiangiogenic activity, target binding, BBB permeability, and ADME physicochemical properties. Additionally, in vitro cytotoxicity, migration, invasion, tube formation, apoptosis, ROS and ELISA assays were conducted for molecule 6 that was deemed most likely to succeed. The efflux ratio of membrane permeability and calculated docking scores of permeability to glycoproteins (P-gps) were used to determine the BBB permeability of the molecules. The results showed BBB permeation for molecule 6, with the predicted efficiency of 0.55kcal/mol and binding affinity of -37kj/mol corresponding to an experimental efflux ratio of 0.625 and predicted -15kj/mol of binding affinity for P-gps. Molecule 6 significantly affected the angiogenesis pathways by 2-fold downregulation of IL17A and VEGF through inactivation of active sites of HSP90 (predicted binding: -37kj/mol, predicted efficiency: 0.55kcal/mol) and p23 (predicted binding: 12kj/mol, predicted efficiency: 0.17kcal/mol) chaperon proteins. Additionally, molecule 6 activated the 17.38% relative fold of ROS level at 18.3μg/mL and upregulated the caspase which lead the potential synergistic apoptosis through the antiangiogenic activity of molecule 6 and thereby the highly efficacious anticancer upshot. The results indicate that the binding of the molecules to the therapeutic target is not essential to produce a lethal effect on cancer cells of the brain and that antiangiogenic efficiency is much more important.
    Matched MeSH terms: Brain Neoplasms/metabolism*
  8. Abubakar IB, Lim KH, Kam TS, Loh HS
    Phytomedicine, 2017 Jul 01;30:74-84.
    PMID: 28545672 DOI: 10.1016/j.phymed.2017.03.004
    BACKGROUND: γ-Tocotrienol, a vitamin E isomer possesses pronounced in vitro anticancer activities. However, the in vivo potency has been limited by hardly achievable therapeutic levels owing to inefficient high-dose oral delivery which leads to subsequent metabolic degradation. Jerantinine A, an Aspidosperma alkaloid, originally isolated from Tabernaemontana corymbosa, has proved to possess interesting anticancer activities. However, jerantinine A also induces toxicity to non-cancerous cells.

    PURPOSE: We adopted a combinatorial approach with the joint application of γ-tocotrienol and jerantinine A at lower concentrations in order to minimize toxicity towards non-cancerous cells while improving the potency on brain cancer cells.

    METHODS: The antiproliferative potency of individual γ-tocotrienol and jerantinine A as well as combined in low-concentration was firstly evaluated on U87MG cancer and MRC5 normal cells. Morphological changes, DNA damage patterns, cell cycle arrests and the effects of individual and combined low-concentration compounds on microtubules were then investigated. Finally, the potential roles of caspase enzymes and apoptosis-related proteins in mediating the apoptotic mechanisms were investigated using apoptosis antibody array, ELISA and Western blotting analysis.

    RESULTS: Combinatorial study between γ-tocotrienol at a concentration range (0-24µg/ml) and fixed IC20 concentration of jerantinine A (0.16µg/ml) induced a potent antiproliferative effect on U87MG cells and led to a reduction on the new half maximal inhibitory concentration of γ-tocotrienol (i.e.tIC50=1.29µg/ml) as compared to that of individual γ-tocotrienol (i.e. IC50=3.17µg/ml). A reduction on undesirable toxicity to MRC5 normal cells was also observed. G0/G1 cell cycle arrest was evident on U87MG cells receiving IC50 of individual γ-tocotrienol and combined low-concentration compounds (1.29µg/ml γ-tocotrienol + 0.16µg/ml jerantinine A), whereas, a profound G2/M arrest was evident on cells treated with IC50 of individual jerantinine A. Additionally, individual jerantinine A and combined compounds (except individual γ-tocotrienol) caused a disruption of microtubule networks triggering Fas- and p53-induced apoptosis mediated via the death receptor and mitochondrial pathways.

    CONCLUSIONS: These findings demonstrated that the combined use of lower concentrations of γ-tocotrienol and jerantinine A induced potent cytotoxic effects on U87MG cancer cells resulting in a reduction on the required individual concentrations and thereby minimizing toxicity of jerantinine A towards non-cancerous MRC5 cells as well as probably overcoming the high-dose limiting application of γ-tocotrienol. The multi-targeted mechanisms of action of the combination approach have shown a therapeutic potential against brain cancer in vitro and therefore, further in vivo investigations using a suitable animal model should be the way forward.

    Matched MeSH terms: Brain Neoplasms/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links