METHODS: Clinicopathological data were retrieved from the archived formal pathology reports for surgical specimens diagnosed as invasive ductal carcinoma, NOS. Microvessels were immunohistochemically stained with anti-CD34 antibody and quantified as microvessel density.
RESULTS: At least 50% of 94 cases of invasive breast ductal carcinoma in the study were advanced stage. The majority had poor prognosis factors such as tumor size larger than 50mm (48.9%), positive lymph node metastasis (60.6%), and tumor grade III (52.1%). Higher percentages of estrogen and progesterone receptor negative cases were recorded (46.8% and 46.8% respectively). Her-2 overexpression cases and triple negative breast cancers constituted 24.5% and 22.3% respectively. Significantly higher microvessel density was observed in the younger patient age group (p=0.012). There were no significant associations between microvessel density and other clinicopathological factors (p>0.05).
CONCLUSIONS: Majority of the breast cancer patients of this institution had advanced stage disease with poorer prognostic factors as compared to other local and western studies. Breast cancer in younger patients might be more proangiogenic.
METHODS: MCF-7 and MDA-MB231 cells were treated with several concentrations of FKA. The apoptotic analysis was done through the MTT assay, BrdU assay, Annexin V analysis, cell cycle analysis, JC-1 mitochondrial dye, AO/PI dual staining, caspase 8/9 fluorometric assay, quantitative real time PCR and western blot. For the metastatic assays, the in vitro scratch assay, trans-well migration/invasion assay, HUVEC tube formation assay, ex vivo rat aortic ring assay, quantitative real time PCR and western blot were employed.
RESULTS: We have investigated the effects of FKA on the apoptotic and metastatic process in two breast cancer cell lines. FKA induces apoptosis in both MCF-7 and MDA-MB231 in a dose dependent manner through the intrinsic mitochondrial pathway. Additionally, FKA selectively induces a G2/M arrest in the cell cycle machinery of MDA-MB231 and G1 arrest in MCF-7. This suggests that FKA's anti-cancer activity is dependent on the p53 status. Moreover, FKA also halted the migration and invasion process in MDA-MB231. The similar effects can be seen in the inhibition of the angiogenesis process as well.
CONCLUSIONS: FKA managed to induce apoptosis and inhibit the metastatic process in two breast cancer cell lines, in vitro. Overall, FKA may serve as a promising candidate in the search of a new anti-cancer drug especially in halting the metastatic process but further in vivo evidence is needed.