Displaying all 6 publications

Abstract:
Sort:
  1. Lau NS, Chee JY, Tsuge T, Sudesh K
    Bioresour Technol, 2010 Oct;101(20):7916-23.
    PMID: 20541932 DOI: 10.1016/j.biortech.2010.05.049
    We attempted to synthesize a polyhydroxyalkanoate (PHA) containing newly reported 3-hydroxy-4-methylvalerate (3H4MV) monomer by using wild type Burkholderia sp. USM (JCM15050) and its transformed strain harboring the PHA synthase gene of Aeromonas caviae (phaCAc). The introduction of 3H4MV as a second monomer will improve the material properties of 3HB-based polymers. To promote the accumulation of PHA containing 3H4MV monomer, isocaproic acid was provided as co-carbon source. Approximately 1mol% of 3H4MV was detected in wild type Burkholderia sp. cultures when they were fed glucose or fructose together with isocaproic acid. Thus, the wild type strain can synthesize the 3H4MV monomer. High 3H4MV fractions, of about 40mol%, were obtained when the transformed strain was cultivated on glucose or fructose together with isocaproic acid. In addition, the ability of the transformed strain to mobilize accumulated PHA containing 3H4MV monomer was demonstrated in this study. This is the first report on mobilization of the 3H4MV monomer.
    Matched MeSH terms: Burkholderia/metabolism*
  2. Chen JW, Koh CL, Sam CK, Yin WF, Chan KG
    Sensors (Basel), 2013;13(10):13217-27.
    PMID: 24084115 DOI: 10.3390/s131013217
    In the bacteria kingdom, quorum sensing (QS) is a cell-to-cell communication that relies on the production of and response to specific signaling molecules. In proteobacteria, N-acylhomoserine lactones (AHLs) are the well-studied signaling molecules. The present study aimed to characterize the production of AHL of a bacterial strain A9 isolated from a Malaysian tropical soil. Strain A9 was identified as Burkholderia sp. using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry and 16S rDNA nucleotide sequence analysis. AHL production by A9 was detected with two biosensors, namely Chromobacterium violaceum CV026 and Escherichia coli [pSB401]. Thin layer chromatography results showed N-hexanoylhomoserine lactone (C6-HSL) and N-octanoylhomoserine lactone (C8-HSL) production. Unequivocal identification of C6-HSL and C8-HSL was achieved by high resolution triple quadrupole liquid chromatography-mass spectrometry analysis. We have demonstrated that Burkholderia sp. strain A9 produces AHLs that are known to be produced by other Burkholderia spp. with CepI/CepR homologs.
    Matched MeSH terms: Burkholderia/metabolism*
  3. Tang SY, Hara S, Melling L, Goh KJ, Hashidoko Y
    Biosci Biotechnol Biochem, 2010;74(9):1972-5.
    PMID: 20834139
    Root-associating bacteria of the nipa palm (Nypa fruticans), preferring brackish-water affected mud in Sarawak, Malaysia, were investigated. In a comparison of rhizobacterial microbiota between the nipa and the sago (Metroxylon sagu) palm, it was found that the nipa palm possessed a group of Burkholderia vietnamiensis as its main active nitrogen-fixing endophytic bacterium. Acetylene reduction by the various isolates of B. vietnamiensis was constant (44 to 68 nmol h(-1) in ethylene production rate) in soft gel medium containing 0.2% sucrose as sole carbon source, and the bacterium also showed motility and biofilm-forming capacity. This is the first report of endophytic nitrogen-fixing bacteria from nipa palm.
    Matched MeSH terms: Burkholderia/metabolism
  4. Chan KG, Atkinson S, Mathee K, Sam CK, Chhabra SR, Cámara M, et al.
    BMC Microbiol, 2011 Mar 08;11:51.
    PMID: 21385437 DOI: 10.1186/1471-2180-11-51
    BACKGROUND: Cell-to-cell communication (quorum sensing (QS)) co-ordinates bacterial behaviour at a population level. Consequently the behaviour of a natural multi-species community is likely to depend at least in part on co-existing QS and quorum quenching (QQ) activities. Here we sought to discover novel N-acylhomoserine lactone (AHL)-dependent QS and QQ strains by investigating a bacterial community associated with the rhizosphere of ginger (Zingiber officinale) growing in the Malaysian rainforest.

    RESULTS: By using a basal growth medium containing N-(3-oxohexanoyl)homoserine lactone (3-oxo-C6-HSL) as the sole source of carbon and nitrogen, the ginger rhizosphere associated bacteria were enriched for strains with AHL-degrading capabilities. Three isolates belonging to the genera Acinetobacter (GG2), Burkholderia (GG4) and Klebsiella (Se14) were identified and selected for further study. Strains GG2 and Se14 exhibited the broadest spectrum of AHL-degrading activities via lactonolysis while GG4 reduced 3-oxo-AHLs to the corresponding 3-hydroxy compounds. In GG2 and GG4, QQ was found to co-exist with AHL-dependent QS and GG2 was shown to inactivate both self-generated and exogenously supplied AHLs. GG2, GG4 and Se14 were each able to attenuate virulence factor production in both human and plant pathogens.

    CONCLUSIONS: Collectively our data show that ginger rhizosphere bacteria which make and degrade a wide range of AHLs are likely to play a collective role in determining the QS-dependent phenotype of a polymicrobial community.

    Matched MeSH terms: Burkholderia/metabolism
  5. Goh SY, Tan WS, Khan SA, Chew HP, Abu Kasim NH, Yin WF, et al.
    Sensors (Basel), 2014;14(5):8940-9.
    PMID: 24854358 DOI: 10.3390/s140508940
    Bacteria realize the ability to communicate by production of quorum sensing (QS) molecules called autoinducers, which regulate the physiological activities in their ecological niches. The oral cavity could be a potential area for the presence of QS bacteria. In this study, we report the isolation of a QS bacterial isolate C10B from dentine caries. Preliminary screening using Chromobacterium violaceum CV026 biosensor showed that isolate C10B was able to produce N-acylhomoserine lactones (AHLs). This bacterium was further identified as a member of Burkholderia, an opportunistic pathogen. The isolated Burkholderia sp. was confirmed to produce N-hexanoyl-L-homoserine lactone (C6-HSL), N-octanoyl-L-homoserine lactone (C8-HSL), N-decanoyl-L-homoserine lactone (C10-HSL) and N-dodecanoyl-L-homoserine lactone (C12-HSL).
    Matched MeSH terms: Burkholderia/metabolism*
  6. Lau NS, Tsuge T, Sudesh K
    Appl Microbiol Biotechnol, 2011 Mar;89(5):1599-609.
    PMID: 21279348 DOI: 10.1007/s00253-011-3097-6
    Burkholderia sp. synthase has been shown to polymerize 3-hydroxybutyrate (3HB), 3-hydroxyvalerate, and 3-hydroxy-4-pentenoic acid monomers. This study was carried out to evaluate the ability of Burkholderia sp. USM (JCM 15050) and its transformant harboring the polyhydroxyalkanoate (PHA) synthase gene of Aeromonas caviae to incorporate the newly reported 3-hydroxy-4-methylvalerate (3H4MV) monomer. Various culture parameters such as concentrations of nutrient rich medium, fructose and 4-methylvaleric acid as well as harvesting time were manipulated to produce P(3HB-co-3H4MV) with different 3H4MV compositions. The structural properties of PHA containing 3H4MV monomer were investigated by using nuclear magnetic resonance and Fourier transform infrared spectroscopy (FTIR). The relative intensities of the bands at 1,183 and 1,228 cm⁻¹ in the FTIR spectra enabled the rapid detection and differentiation of P(3HB-co-3H4MV) from other types of PHA. In addition, the presence of 3H4MV units in the copolymer was found to considerably lower the melting temperature and enthalpy of fusion values compared with poly(3-hydroxybutyrate) (P(3HB)). The copolymer exhibited higher thermo-degradation temperature but similar molecular weight and polydispersity compared with P(3HB).
    Matched MeSH terms: Burkholderia/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links