Displaying all 11 publications

Abstract:
Sort:
  1. Wong KK
    Comput Biol Chem, 2023 Aug;105:107897.
    PMID: 37247573 DOI: 10.1016/j.compbiolchem.2023.107897
    Immunotherapy development against colorectal cancer (CRC) is hindered by the lack of cell surface target highly expressed in cancer cells but with restricted presence in normal tissues to minimize off-tumor toxicities. In this in silico analysis, a longlist of genes (n = 13,488) expressed in CRCs according to the Human Protein Atlas (HPA) database were evaluated to shortlist for potential surface targets based on the following prerequisites: (i) Absent from the brain and lung tissues to minimize the likelihood of neurologic and pulmonary toxicities; (ii) Restricted expression profile in other normal human tissues; (iii) Genes that potentially encode cell surface proteins and; (iv) At least moderately expressed in CRC cases. Fifteen potential targets were shortlisted and subsequently ranked according to the combination of their transcript and protein expression levels in CRCs derived from multiple datasets (i.e. DepMap, TCGA, CPTAC-2, and HPA CRCs). The top-ranked target with the highest and homogenous expression in CRCs was cadherin 17 (CDH17). Downstream analysis of CRC transcriptomics and proteomics datasets showed that CDH17 was significantly correlated with carcinoembryonic antigen expression. Moreover, CDH17 expression was significantly lower in CRC cases with high microsatellite instability, as well as negatively associated with immune response gene sets and the expression of MHC class I and II molecules. CDH17 represents an optimal target for therapeutic development against CRCs, and this study provides a novel framework to identify key cell surface targets for therapeutic development against other malignancies.
    Matched MeSH terms: Cadherins/genetics
  2. Wong SHM, Fang CM, Chuah LH, Leong CO, Ngai SC
    Crit Rev Oncol Hematol, 2018 Jan;121:11-22.
    PMID: 29279096 DOI: 10.1016/j.critrevonc.2017.11.010
    E-cadherin is a transmembrane glycoprotein which connects epithelial cells together at adherens junctions. In normal cells, E-cadherin exerts its tumour suppressing role mainly by sequestering β-catenin from its binding to LEF (Lymphoid enhancer factor)/TCF (T cell factor) which serves the function of transcribing genes of the proliferative Wnt signaling pathway. Despite the ongoing debate on whether the loss of E-cadherin is the cause or effect of epithelial-mesenchymal transition (EMT), E-cadherin functional loss has frequently been associated with poor prognosis and survival in patients of various cancers. The dysregulation of E-cadherin expression that leads to carcinogenesis happens mostly at the epigenetic level but there are cases of genetic alterations as well. E-cadherin expression has been linked to the cellular functions of invasiveness reduction, growth inhibition, apoptosis, cell cycle arrest and differentiation. Studies on various cancers have shown that these different cellular functions are also interdependent. Recent studies have reported a rapid expansion of E-cadherin clinical relevance in various cancers. This review article summarises the multifaceted effect E-cadherin expression has on cellular functions in the context of carcinogenesis as well as its clinical implications in diagnosis, prognosis and therapeutics.
    Matched MeSH terms: Cadherins/genetics
  3. Yang C, Li X, Wang C, Fu S, Li H, Guo Z, et al.
    J. Mol. Histol., 2016 Dec;47(6):541-554.
    PMID: 27650519
    N-cadherin is a calcium-sensitive cell adhesion molecule that plays an important role in the formation of the neural circuit and the development of the nervous system. In the present study, we investigated the function of N-cadherin in cell-cell connection in vitro with HEK293T cells, and in commissural axon projections in the developing chicken spinal cord using in ovo electroporation. Cell-cell connections increased with N-cadherin overexpression in HEK293T cells, while cell contacts disappeared after co-transfection with an N-cadherin-shRNA plasmid. The knockdown of N-cadherin caused the accumulation of β-catenin in the nucleus, supporting the notion that N-cadherin regulates β-catenin signaling in vitro. Furthermore, N-cadherin misexpression perturbed commissural axon projections in the spinal cord. The overexpression of N-cadherin reduced the number of axons that projected alongside the contralateral margin of the floor plate, and formed intermediate longitudinal commissural axons. In contrast, the knockdown of N-cadherin perturbed commissural axon projections significantly, affecting the projections alongside the contralateral margin of the floor plate, but did not affect intermediate longitudinal commissural axons. Taken together, these findings suggest that N-cadherin regulates commissural axon projections in the developing chicken spinal cord.
    Matched MeSH terms: Cadherins/genetics*
  4. Khor GH, Froemming GR, Zain RB, Abraham TM, Lin TK
    Asian Pac J Cancer Prev, 2016;17(1):219-23.
    PMID: 26838213
    BACKGROUND: Promoter hypermethylation is a frequent epigenetic mechanism for gene transcription repression in cancer and is one of the hallmarks of the disease. Cadherin EGF LAG seven-pass G-type receptor 3 (CELSR3) contributes to cell contact-mediated communication. Dysregulation of promoter methylation has been reported in various cancers.

    OBJECTIVES: The objectives of this study were to investigate the CELSR3 hypermethylation level in oral squamous cell carcinomas (OSCCs) using methylation-sensitive high-resolution melting analysis (MS-HRM) and to correlate CELSR3 methylation with patient demographic and clinicopathological parameters.

    MATERIALS AND METHODS: Frozen tissue samples of healthy subjects' normal mucosa and OSCCs were examined with regard to their methylation levels of the CELSR3 gene using MS-HRM.

    RESULTS: MS-HRM analysis revealed a high methylation level of CELSR3 in 86% of OSCC cases. Significant correlations were found between CELSR3 quantitative methylation levels with patient ethnicity (P=0.005), age (P=0.024) and pathological stages (P=0.004). A moderate positive correlation between CELSR3 and patient age was also evident (R=0.444, P=0.001).

    CONCLUSIONS: CELSR3 promoter hypermethylation may be an important mechanism involved in oral carcinogenesis. It may thus be used as a biomarker in OSCC prognostication.

    Matched MeSH terms: Cadherins/genetics*
  5. Ma B, Khazali A, Shao H, Jiang Y, Wells A
    Cell Commun Signal, 2019 12 12;17(1):164.
    PMID: 31831069 DOI: 10.1186/s12964-019-0489-1
    BACKGROUND: Carcinoma cells shift between epithelial and mesenchymal phenotypes during cancer progression, as defined by surface presentation of the cell-cell cohesion molecule E-cadherin, affecting dissemination, progression and therapy responsiveness. Concomitant with the loss of E-cadherin during the mesenchymal transition, the predominant receptor isoform for ELR-negative CXC ligands shifts from CXCR3-B to CXCR3-A which turns this classical G-protein coupled receptor from an inhibitor to an activator of cell migration, thus promoting tumor cell invasiveness. We proposed that CXCR3 was not just a coordinately changed receptor but actually a regulator of the cell phenotype.

    METHODS: Immunoblotting, immunofluorescence, quantitative real-time PCR and flow cytometry assays investigated the expression of E-cadherin and CXCR3 isoforms. Intrasplenic inoculation of human prostate cancer (PCa) cells with spontaneous metastasis to the liver analyzed E-cadherin and CXCR3-B expression during cancer progression in vivo.

    RESULTS: We found reciprocal regulation of E-cadherin and CXCR3 isoforms. E-cadherin surface expression promoted CXCR3-B presentation on the cell membrane, and to a lesser extent increased its mRNA and total protein levels. In turn, forced expression of CXCR3-A reduced E-cadherin expression level, whereas CXCR3-B increased E-cadherin in PCa. Meanwhile, a positive correlation of E-cadherin and CXCR3-B expression was found both in experimental PCa liver micro-metastases and patients' tissue.

    CONCLUSIONS: CXCR3-B and E-cadherin positively correlated in vitro and in vivo in PCa cells and liver metastases, whereas CXCR3-A negatively regulated E-cadherin expression. These results suggest that CXCR3 isoforms may play important roles in cancer progression and dissemination via diametrically regulating tumor's phenotype.

    Matched MeSH terms: Cadherins/genetics*
  6. Chan SW, Kallarakkal TG, Abraham MT
    Asian Pac J Cancer Prev, 2014;15(5):2145-52.
    PMID: 24716948
    BACKGROUND: The survival rate for oral squamous cell carcinoma (OSCC) has remained generally unchanged in the past three decades, underlining the need for more biomarkers to be developed to aid prognostication and effective management. The prognostic potential of E-cadherin expression in OSCCs has been variable in previous studies while galectin-9 expression has been correlated with improved prognosis in other cancers. The aim of the present study was to investigate the expression of galectin-9 and E-cadherin in OSCC and their potential as prognostic biomarkers.

    MATERIALS AND METHODS: E-cadherin and Galectin-9 expression was examined by immunohistochemistry in 32 cases of OSCC of the buccal mucosa (13 with and 19 without lymph node metastasis), as well as 6 samples of reactive lesions and 5 of normal buccal mucosa.

    RESULTS: The expression of E-cadherin in OSCC was significantly lower than the control tissues but galectin-9 expression was conversely higher. Median E-cadherin HSCOREs between OSCCs positive and negative for nodal metastasis were not significantly different. Mean HSCOREs for galectin-9 in OSCC without lymph node metastasis (127.7 ± 81.8) was higher than OSCC with lymph node metastasis (97.9 ± 62.9) but this difference was not statistically significant.

    CONCLUSIONS: E-cadherin expression is reduced whilst galectin-9 expression is increased in OSCC. However, the present results suggest that E-cadherin and galectin-9 expression may not be useful as prognostic markers for OSCC.

    Matched MeSH terms: Cadherins/genetics*
  7. Farea M, Halim AS, Abdullah NA, Lim CK, Mokhtar KI, Berahim Z, et al.
    Int J Mol Sci, 2013;14(6):11157-70.
    PMID: 23712356 DOI: 10.3390/ijms140611157
    Hertwig's epithelial root sheath (HERS) cells play a pivotal role during root formation of the tooth and are able to form cementum-like tissue. The aim of the present study was to establish a HERS cell line for molecular and biochemical studies using a selective digestion method. Selective digestion was performed by the application of trypsin-EDTA for 2 min, which led to the detachment of fibroblast-like-cells, with the rounded cells attached to the culture plate. The HERS cells displayed a typical cuboidal/squamous-shaped appearance. Characterization of the HERS cells using immunofluorescence staining and flow cytometry analysis showed that these cells expressed pan-cytokeratin, E-cadherin, and p63 as epithelial markers. Moreover, RT-PCR confirmed that these cells expressed epithelial-related genes, such as cytokeratin 14, E-cadherin, and ΔNp63. Additionally, HERS cells showed low expression of CD44 and CD105 with absence of CD34 and amelogenin expressions. In conclusion, HERS cells have been successfully isolated using a selective digestion method, thus enabling future studies on the roles of these cells in the formation of cementum-like tissue in vitro.
    Matched MeSH terms: Cadherins/genetics
  8. Gee HY, Sadowski CE, Aggarwal PK, Porath JD, Yakulov TA, Schueler M, et al.
    Nat Commun, 2016 Feb 24;7:10822.
    PMID: 26905694 DOI: 10.1038/ncomms10822
    Steroid-resistant nephrotic syndrome (SRNS) causes 15% of chronic kidney disease (CKD). Here we show that recessive mutations in FAT1 cause a distinct renal disease entity in four families with a combination of SRNS, tubular ectasia, haematuria and facultative neurological involvement. Loss of FAT1 results in decreased cell adhesion and migration in fibroblasts and podocytes and the decreased migration is partially reversed by a RAC1/CDC42 activator. Podocyte-specific deletion of Fat1 in mice induces abnormal glomerular filtration barrier development, leading to podocyte foot process effacement. Knockdown of Fat1 in renal tubular cells reduces migration, decreases active RAC1 and CDC42, and induces defects in lumen formation. Knockdown of fat1 in zebrafish causes pronephric cysts, which is partially rescued by RAC1/CDC42 activators, confirming a role of the two small GTPases in the pathogenesis. These findings provide new insights into the pathogenesis of SRNS and tubulopathy, linking FAT1 and RAC1/CDC42 to podocyte and tubular cell function.
    Matched MeSH terms: Cadherins/genetics*
  9. Martin D, Degese MS, Vitale-Cross L, Iglesias-Bartolome R, Valera JLC, Wang Z, et al.
    Nat Commun, 2018 07 09;9(1):2372.
    PMID: 29985391 DOI: 10.1038/s41467-018-04590-1
    Dysregulation of the Hippo signaling pathway and the consequent YAP1 activation is a frequent event in human malignancies, yet the underlying molecular mechanisms are still poorly understood. A pancancer analysis of core Hippo kinases and their candidate regulating molecules revealed few alterations in the canonical Hippo pathway, but very frequent genetic alterations in the FAT family of atypical cadherins. By focusing on head and neck squamous cell carcinoma (HNSCC), which displays frequent FAT1 alterations (29.8%), we provide evidence that FAT1 functional loss results in YAP1 activation. Mechanistically, we found that FAT1 assembles a multimeric Hippo signaling complex (signalome), resulting in activation of core Hippo kinases by TAOKs and consequent YAP1 inactivation. We also show that unrestrained YAP1 acts as an oncogenic driver in HNSCC, and that targeting YAP1 may represent an attractive precision therapeutic option for cancers harboring genomic alterations in the FAT1 tumor suppressor genes.
    Matched MeSH terms: Cadherins/genetics
  10. Liu X, Yunus Y, Lu D, Aghakhanian F, Saw WY, Deng L, et al.
    Hum Genet, 2015 Apr;134(4):375-92.
    PMID: 25634076 DOI: 10.1007/s00439-014-1525-2
    The indigenous populations from Peninsular Malaysia, locally known as Orang Asli, continue to adopt an agro-subsistence nomadic lifestyle, residing primarily within natural jungle habitats. Leading a hunter-gatherer lifestyle in a tropical jungle environment, the Orang Asli are routinely exposed to malaria. Here we surveyed the genetic architecture of individuals from four Orang Asli tribes with high-density genotyping across more than 2.5 million polymorphisms. These tribes reside in different geographical locations in Peninsular Malaysia and belong to three main ethno-linguistic groups, where there is minimal interaction between the tribes. We first dissect the genetic diversity and admixture between the tribes and with neighboring urban populations. Later, by implementing five metrics, we investigated the genome-wide signatures for positive natural selection of these Orang Asli, respectively. Finally, we searched for evidence of genomic adaptation to the pressure of malaria infection. We observed that different evolutionary responses might have emerged in the different Orang Asli communities to mitigate malaria infection.
    Matched MeSH terms: Cadherins/genetics
  11. Soe HJ, Khan AM, Manikam R, Samudi Raju C, Vanhoutte P, Sekaran SD
    J Gen Virol, 2017 Dec;98(12):2993-3007.
    PMID: 29182510 DOI: 10.1099/jgv.0.000981
    Plasma leakage is the main pathophysiological feature in severe dengue, resulting from altered vascular barrier function associated with an inappropriate immune response triggered upon infection. The present study investigated functional changes using an electric cell-substrate impedance sensing system in four (brain, dermal, pulmonary and retinal) human microvascular endothelial cell (MEC) lines infected with purified dengue virus, followed by assessment of cytokine profiles and the expression of inter-endothelial junctional proteins. Modelling of changes in electrical impedance suggests that vascular leakage in dengue-infected MECs is mostly due to the modulation of cell-to-cell interactions, while this loss of vascular barrier function observed in the infected MECs varied between cell lines and DENV serotypes. High levels of inflammatory cytokines (IL-6 and TNF-α), chemokines (CXCL1, CXCL5, CXCL11, CX3CL1, CCL2 and CCL20) and adhesion molecules (VCAM-1) were differentially produced in the four infected MECs. Further, the tight junctional protein, ZO-1, was down-regulated in both the DENV-1-infected brain and pulmonary MECs, while claudin-1, PECAM-1 and VE-cadherin were differentially expressed in these two MECs after infection. Non-purified virus stock was also studied to investigate the impact of virus stock purity on dengue-specific immune responses, and the results suggest that virus stock propagated through cell culture may include factors that mask or alter the DENV-specific immune responses of the MECs. The findings of the present study show that high DENV load differentially modulates human microvascular endothelial barrier function and disrupts the function of inter-endothelial junctional proteins during early infection with organ-specific cytokine production.
    Matched MeSH terms: Cadherins/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links