Displaying all 3 publications

Abstract:
Sort:
  1. Nomikou K, Dovas CI, Maan S, Anthony SJ, Samuel AR, Papanastassopoulou M, et al.
    PLoS One, 2009;4(7):e6437.
    PMID: 19649272 DOI: 10.1371/journal.pone.0006437
    Bluetongue virus (BTV) is the 'type' species of the genus Orbivirus within the family Reoviridae. The BTV genome is composed of ten linear segments of double-stranded RNA (dsRNA), each of which codes for one of ten distinct viral proteins. Previous phylogenetic comparisons have evaluated variations in genome segment 3 (Seg-3) nucleotide sequence as way to identify the geographical origin (different topotypes) of BTV isolates. The full-length nucleotide sequence of genome Seg-3 was determined for thirty BTV isolates recovered in the eastern Mediterranean region, the Balkans and other geographic areas (Spain, India, Malaysia and Africa). These data were compared, based on molecular variability, positive-selection-analysis and maximum-likelihood phylogenetic reconstructions (using appropriate substitution models) to 24 previously published sequences, revealing their evolutionary relationships. These analyses indicate that negative selection is a major force in the evolution of BTV, restricting nucleotide variability, reducing the evolutionary rate of Seg-3 and potentially of other regions of the BTV genome. Phylogenetic analysis of the BTV-4 strains isolated over a relatively long time interval (1979-2000), in a single geographic area (Greece), showed a low level of nucleotide diversity, indicating that the virus can circulate almost unchanged for many years. These analyses also show that the recent incursions into south-eastern Europe were caused by BTV strains belonging to two different major-lineages: representing an 'eastern' (BTV-9, -16 and -1) and a 'western' (BTV-4) group/topotype. Epidemiological and phylogenetic analyses indicate that these viruses originated from a geographic area to the east and southeast of Greece (including Cyprus and the Middle East), which appears to represent an important ecological niche for the virus that is likely to represent a continuing source of future BTV incursions into Europe.
    Matched MeSH terms: Capsid Proteins/classification
  2. Supian NI, Ng KT, Chook JB, Takebe Y, Chan KG, Tee KK
    BMC Infect Dis, 2021 May 17;21(1):446.
    PMID: 34001016 DOI: 10.1186/s12879-021-06148-x
    BACKGROUND: Coxsackievirus A21 (CVA21), a member of Enterovirus C from the Picornaviridae family, has been associated with respiratory illnesses in humans.

    METHODS: A molecular epidemiological investigation of CVA21 was conducted among patients presenting with acute upper respiratory illnesses in the ambulatory settings between 2012 and 2014 in Kuala Lumpur, Malaysia.

    RESULTS: Epidemiological surveillance of acute respiratory infections (n = 3935) showed low-level detection of CVA21 (0.08%, 1.4 cases/year) in Kuala Lumpur, with no clear seasonal distribution. Phylogenetic analysis of the new complete genomes showed close relationship with CVA21 strains from China and the United States. Spatio-temporal mapping of the VP1 gene determined 2 major clusters circulating worldwide, with inter-country lineage migration and strain replacement occurring over time.

    CONCLUSIONS: The study highlights the emerging role of CVA21 in causing sporadic acute respiratory outbreaks.

    Matched MeSH terms: Capsid Proteins/classification
  3. Amit LN, Mori D, John JL, Chin AZ, Mosiun AK, Jeffree MS, et al.
    PLoS One, 2021;16(7):e0254784.
    PMID: 34320003 DOI: 10.1371/journal.pone.0254784
    Rotavirus infection is a dilemma for developing countries, including Malaysia. Although commercial rotavirus vaccines are available, these are not included in Malaysia's national immunization program. A scarcity of data about rotavirus genotype distribution could be partially to blame for this policy decision, because there are no data for rotavirus genotype distribution in Malaysia over the past 20 years. From January 2018 to March 2019, we conducted a study to elucidate the rotavirus burden and genotype distribution in the Kota Kinabalu and Kunak districts of the state of Sabah. Stool specimens were collected from children under 5 years of age, and rotavirus antigen in these samples was detected using commercially available kit. Electropherotypes were determined by polyacrylamide gel electrophoresis of genomic RNA. G and P genotypes were determined by RT-PCR using type specific primers. The nucleotide sequence of the amplicons was determined by Sanger sequencing and phylogenetic analysis was performed by neighbor-joining method. Rotavirus was identified in 43 (15.1%) children with watery diarrhea. The male:female ratio (1.9:1) of the rotavirus-infected children clearly showed that it affected predominantly boys, and children 12-23 months of age. The genotypes identified were G3P[8] (74% n = 31), followed by G1P[8] (14% n = 6), G12P[6](7% n = 3), G8P[8](3% n = 1), and GxP[8] (3% n = 1). The predominant rotavirus circulating among the children was the equine-like G3P[8] (59.5% n = 25) with a short electropherotype. Eleven electropherotypes were identified among 34 strains, indicating substantial diversity among the circulating strains. The circulating genotypes were also phylogenetically diverse and related to strains from several different countries. The antigenic epitopes present on VP7 and VP4 of Sabahan G3 and equine-like G3 differed considerably from that of the RotaTeq vaccine strain. Our results also indicate that considerable genetic exchange is occurring in Sabahan strains. Sabah is home to a number of different ethnic groups, some of which culturally are in close contact with animals, which might contribute to the evolution of diverse rotavirus strains. Sabah is also a popular tourist destination, and a large number of tourists from different countries possibly contributes to the diversity of circulating rotavirus genotypes. Considering all these factors which are contributing rotavirus genotype diversity, continuous surveillance of rotavirus strains is of utmost importance to monitor the pre- and post-vaccination efficacy of rotavirus vaccines in Sabah.
    Matched MeSH terms: Capsid Proteins/classification
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links