Displaying all 4 publications

Abstract:
Sort:
  1. Zahari MA, Zakaria MR, Ariffin H, Mokhtar MN, Salihon J, Shirai Y, et al.
    Bioresour Technol, 2012 Apr;110:566-71.
    PMID: 22342083 DOI: 10.1016/j.biortech.2012.01.119
    In this paper, we report that pressed juice from oil palm frond (OPF) contained renewable sugars such as glucose, sucrose and fructose. By using a simple sugarcane press, 50% (wt/wt) of OPF juice was obtained from fresh OPF. The glucose content in the juice was 53.95±2.86g/l, which accounts for 70% of the total free sugars. We have examined the effect of various OPF juice concentrations on the production of poly(3-hydroxybutyrate), P(3HB) by Cupriavidus necator CCUG 52238(T). The cell dry mass in shake flask experiment reached 8.42g/l, with 32wt.% of P(3HB) at 30% (v/v) of OPF juice, comparable with using technical grade sugars. The biopolymer had a molecular mass, M(w) of 812kDa, with a low polydispersity index of 1.61. This result indicates that OPF juice can be used as an alternative renewable carbon source for P(3HB) production and has potential as a renewable carbon source.
    Matched MeSH terms: Carbohydrates/isolation & purification*
  2. Lee KM, Ngoh GC, Chua AS
    Bioresour Technol, 2013 Feb;130:1-7.
    PMID: 23280179 DOI: 10.1016/j.biortech.2012.11.124
    The production of reducing sugars from sago waste via sequential ionic liquid dissolution-solid acid saccharification was optimized in this study. Ionic liquid dissolution of sago waste with 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) was conducted prior to the solid acid saccharification with Amberlyst 15 (A15). The effect of time, temperature and substrate loading during dissolution reaction; and the effect of time, temperature and catalyst loading during saccharification reaction were examined by applying central composite design (CCD) separately. Both dissolution and saccharification reactions were respectively modeled into quadratic polynomial equations with good predictive accuracies. A high reducing sugars yield of 98.3% was obtained under the optimized conditions, i.e. dissolution at 1.75h, 160°C, 1.5% substrate loading, and saccharification at 0.5h, 130°C, 4% catalyst loading. From comparison studies of different saccharification schemes, the sequential ionic liquid dissolution-solid acid saccharification has proven to be a potential method in reducing sugars production from the lignocellulosic biomass.
    Matched MeSH terms: Carbohydrates/isolation & purification*
  3. Awaluddin SA, Thiruvenkadam S, Izhar S, Hiroyuki Y, Danquah MK, Harun R
    Biomed Res Int, 2016;2016:5816974.
    PMID: 27366748 DOI: 10.1155/2016/5816974
    Subcritical water extraction (SWE) technology has been used for the extraction of active compounds from different biomass materials with low process cost, mild operating conditions, short process times, and environmental sustainability. With the limited application of the technology to microalgal biomass, this work investigates parametrically the potential of subcritical water for high-yield extraction of biochemicals such as carbohydrates and proteins from microalgal biomass. The SWE process was optimized using central composite design (CCD) under varying process conditions of temperature (180-374°C), extraction time (1-20 min), biomass particulate size (38-250 μm), and microalgal biomass loading (5-40 wt.%). Chlorella vulgaris used in this study shows high volatile matter (83.5 wt.%) and carbon content (47.11 wt.%), giving advantage as a feedstock for biofuel production. The results showed maximum total carbohydrate content and protein yields of 14.2 g/100 g and 31.2 g/100 g, respectively, achieved under the process conditions of 277°C, 5% of microalgal biomass loading, and 5 min extraction time. Statistical analysis revealed that, of all the parameters investigated, temperature is the most critical during SWE of microalgal biomass for protein and carbohydrate production.
    Matched MeSH terms: Carbohydrates/isolation & purification*
  4. Bujang JS, Zakaria MH, Ramaiya SD
    PLoS One, 2021;16(2):e0247327.
    PMID: 33626109 DOI: 10.1371/journal.pone.0247327
    Currently, bee-gathered pollen (bee pollen) is commonly used worldwide as a dietary supplement and is recognized for its curative properties. Floral pollen is also important but is less recognized due to a lack of investigation. This study aims to determine the morphological characteristics and nutritional and phytochemical properties of floral maize pollen. Fresh pollen grains harvested from a farm of maize plants are yellow in colour and spheroid in shape. They change to amber and indented prismatic solid shapes when dehydrated. The main composition of floral maize pollen is carbohydrates (44.30±3.73%), followed by moisture (23.38±5.73%), crude proteins (17.16±3.13%), crude fibres (9.56±0.92%), and ash (4.98±0.11%), while the lowest content is observed for crude fats (0.62±0.06%). The predominant mineral is potassium (768.50±11.40 mg 100 g-1), followed by sodium (695.10±9.70 mg 100 g-1), calcium (147.20±12.60 mg 100 g-1), and magnesium (97.30±2.9 mg 100 g-1). The microelements (with average values) consist of iron (49.50±3.30 mg 100 g-1) and zinc (30.00±3.70 mg 100 g-1). Excellent phytochemical properties add value to floral maize pollen. Maize pollen contains a high total phenolic content (TPC) and total flavonoid content (TFC) of 783.02 mg GAE 100 g-1 and 1706.83 mg QE 100 g-1, respectively, and possesses strong antioxidant activity of 10.54 mg mL-1. Maize floral pollen and derived products can serve as future food resources for human consumption and as a source of functional and bioactive compounds in nutraceutical and pharmaceutical industries.
    Matched MeSH terms: Carbohydrates/isolation & purification
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links