Displaying all 5 publications

Abstract:
Sort:
  1. Iqbal M, Gnanaraj C
    Environ Health Prev Med, 2012 Jul;17(4):307-15.
    PMID: 22207570 DOI: 10.1007/s12199-011-0255-5
    OBJECTIVES: The purpose of this study was to evaluate the ability of aqueous extract of Eleusine indica to protect against carbon tetrachloride (CCl₄)-induced hepatic injury in rats.

    METHODS: The antioxidant activity of E. indica was evaluated using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assay. The total phenolic content of E. indica was also determined. Biochemical parameters [e.g. alanine aminotransferase (ALT), aspartate aminotransferase (AST), malondialdehyde (MDA), glutathione (GSH), catalase, glutathione peroxidase, glutathione reductase, glutathione S-transferase and quinone reductase] were used to evaluate hepatic damage in animals pretreated with E. indica and intoxicated with CCl₄. CCl₄-mediated hepatic damage was also evaluated by histopathologically.

    RESULTS: E. indica extract was able to reduce the stable DPPH level in a dose-dependent manner. The half maximal inhibitory concentration (IC₅₀) value was 2350 μg/ml. Total phenolic content was found to be 14.9 ± 0.002 mg/g total phenolic expressed as gallic acid equivalent per gram of extract. Groups pretreated with E. indica showed significantly increased activity of antioxidant enzymes compared to the CCl₄-intoxicated group (p < 0.05). The increased levels of serum ALT and AST were significantly prevented by E. indica pretreatment (p < 0.05). The extent of MDA formation due to lipid peroxidation was significantly reduced (p < 0.05), and reduced GSH was significantly increased in a dose-dependently manner (p < 0.05) in the E. indica-pretreated groups as compared to the CCl₄-intoxicated group. The protective effect of E. indica was further evident through decreased histopathological alterations in the liver.

    CONCLUSION: The results of our study indicate that the hepatoprotective effects of E. indica might be ascribable to its antioxidant and free radical scavenging property.

    Matched MeSH terms: Carbon Tetrachloride Poisoning/drug therapy*; Carbon Tetrachloride Poisoning/metabolism; Carbon Tetrachloride Poisoning/pathology
  2. Koh PH, Mokhtar RA, Iqbal M
    Hum Exp Toxicol, 2012 Jan;31(1):81-91.
    PMID: 21508074 DOI: 10.1177/0960327111407226
    This study was aimed to evaluate the effect of Cymbopogon citratus against carbon tetrachloride (CCl(4))-mediated hepatic oxidative damage in rats. Rats were administrated with C. citratus extract (100, 200 and 300 mg/kg b.w.) for 14 days before the challenge of CCl(4) (1.2 ml/kg b.w. p.o) on 13th and 14th days. Hepatic damage was evaluated by employing serum biochemical parameters (alanine aminotransferase-ALT, aspartate aminotransferase-AST and lactate dehydrogenase-LDH), malondialdehye (MDA) level, reduced GSH and antioxidant enzymes (catalase: CAT, glutathione peroxidase: GPX, quinone reductase: QR, glutathione S-transferase: GST, glutathione reductase: GR, glucose-6-phosphate dehyrogenase: G6PD). In addition, CCl(4)-mediated hepatic damage was further evaluated by histopathological examination. However, most of these changes were alleviated by prophylactic treatment of animals with C. citratus dose dependently (p < 0.05). The protection was further evident through decreased histopathological alterations in liver. The results of the present study indicated that the hepatoprotective effect of C. citratus might be ascribable to its antioxidant and free radical scavenging property.
    Matched MeSH terms: Carbon Tetrachloride Poisoning/drug therapy*; Carbon Tetrachloride Poisoning/metabolism; Carbon Tetrachloride Poisoning/pathology
  3. Akowuah GA, Zhari I, Mariam A, Yam MF
    Food Chem Toxicol, 2009 Sep;47(9):2321-6.
    PMID: 19540299 DOI: 10.1016/j.fct.2009.06.022
    A simple and validated high-performance liquid chromatography (HPLC) method with UV detection has been used to determine the content of andrographolide (AP) and 14-deoxy-11,12-didehydroandrographolide (DIAP) in rat plasma after oral dose of methanol extract (1 g/kg body weight) of Andrographis paniculata leaf. An increase in plasma concentration of AP and DIAP was observed from 30 min to 3 h after oral administration of the extract. The maximum plasma concentrations of AP and DIAP were 1.42+/-0.09 microg/ml and 1.31+/-0.04 microg/ml, respectively. Fourteen days oral treatment of rats with the methanol extract (1 g/kg body weight) followed by CCl(4) administration preserved catalase (CAT), and superoxide dismutase (SOD) activities in erythrocytes, whereas plasma lipid peroxidation, alanine transaminase (ALT) and aspartate transaminase (AST) activities were restored to values comparable with control values. Treatment of rats with CCl(4) did not showed significant alteration (p>0.05) in plasma total antioxidant status (TAS) as compare to values of control group.
    Matched MeSH terms: Carbon Tetrachloride Poisoning/drug therapy*; Carbon Tetrachloride Poisoning/metabolism
  4. Rahman A, Vasenwala SM, Iqbal M
    Hum Exp Toxicol, 2017 Aug;36(8):785-794.
    PMID: 27758841 DOI: 10.1177/0960327116665675
    Glyceryl trinitrate (GTN) has been used widely as a potent vasodilator to treat heart conditions, such as angina pectoris and chronic heart failure. This study aims to elucidate the effect of exogenous nitric oxide (NO) administration, using GTN, on carbon tetrachloride (CCl4)-induced oxidative stress and liver injury in rats. The results obtained demonstrated that NO generated by the administration of GTN affords protection against CCl4-induced oxidative stress and liver injury. Administration of CCl4resulted in a significant ( p < 0.001) increase in lipid peroxidation and tissue damage markers (aspartate and alanine transaminase and lactate dehydrogenase) release in serum. Parallel to these changes, CCl4also caused downregulation of antioxidant enzymes including glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-S-transferase (GST), and several fold induction in γ-glutamyl transpeptidase (GGT) activity. Subsequent administration of GTN resulted in significant ( p < 0.001) recovery of GSH-metabolizing enzymes in a dose-dependent manner. Further, administration of NO inhibitor, NG-nitro-l-arginine methyl ester (l-NAME), exacerbated CCl4-induced oxidative tissue injury. Overall, the study suggests that GTN might suppress oxidant-induced tissue injury and hepatotoxicity in rats.
    Matched MeSH terms: Carbon Tetrachloride Poisoning*
  5. Koh PH, Mokhtar RA, Iqbal M
    Redox Rep, 2011;16(3):134-43.
    PMID: 21801496 DOI: 10.1179/1351000211Y.0000000003
    Andrographis paniculata (hempedu bumi) is a plant that possesses many medicinal values in treating several diseases and for health care maintenance. However, its hepatoprotective activity and mechanism of action have not been fully investigated. Therefore, this study aimed to evaluate the hepatoprotective effects of A. paniculata and its mechanism of action in rats. Carbon tetrachloride (CCl(4)) challenge of rats at a dose of 1.2 ml/kg body weight-induced oxidative stress in the liver. This was evidenced by augmentation in lipid peroxidation, which was accompanied by a decrease in the activities of antioxidant enzymes and depletion in the level of reduced glutathione (P < 0.05). Parrallel to these changes, CCl(4) challenge too, enhanced hepatic damage as evidenced by sharp increase in serum transaminases (e.g. alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase) (P < 0.05). Additionally, the impairment of liver function corresponded to histolopathological changes. However, most of these changes were reversed in a dose-dependent fashion by pre-treatment of animals with A. paniculata (P < 0.05). The ability of A. paniculata to scavenge the 2,2-Diphenyl-2-picrylhydrazyl radical was determined through its EC(50) value. The EC(50) value of A. paniculata was 583.60 ± 4.25 µg/ml. In addition, A. paniculata was found to contain 65.37 ± 1.20 mg/g total phenolics expressed as gallic acid equivalent. From these studies, it is concluded that A. paniculata could be used as a hepatoprotective agent and possesses the potential to treat or prevent degenerative diseases where oxidative stress is implicated.
    Matched MeSH terms: Carbon Tetrachloride Poisoning/drug therapy*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links