METHODS: A deterministic, prevalence-based model was used to project the annual health burden and direct medical costs associated with recurrent ASCVD events over a 10-year horizon. The target population included adults (≥30 years) with established ASCVD and uncontrolled LDL-C levels (>1.8 mmol/L). The model comprised 3 modules: population size projection, recurrent ASCVD risk calculation (by means of the Secondary Manifestations of ARTerial disease [SMART] risk model), and direct medical and productivity cost estimation. The current status quo and a scenario with a 50% improvement in mean LDL-C were compared.
RESULTS: We projected over 800 000 adults with established ASCVD in 2023, increasing to approximately 1.4 million by 2032. Under the status quo, about 55 000 recurrent ASCVD events were expected within 10 years, with significant direct medical costs and productivity losses. Improved LDL-C control could potentially reduce recurrent events by 7000 cases (13% reduction), prevent 2100 premature deaths, and save approximately 32 400 years of life. Economically, this could lead to a reduction of approximately 72 million MYR in direct medical costs and a gain of approximately 132.4 million MYR in productivity over a decade.
CONCLUSIONS: Optimizing LDL-C control in high-risk patients with ASCVD presents a critical opportunity to reduce health and economic burdens in Malaysia.
METHODS: In this large-scale prospective cohort study, we recruited adults aged between 35 years and 70 years from 367 urban and 302 rural communities in 20 countries. We collected data on families and households in two questionnaires, and data on cardiovascular risk factors in a third questionnaire, which was supplemented with physical examination. We assessed socioeconomic status using education and a household wealth index. Education was categorised as no or primary school education only, secondary school education, or higher education, defined as completion of trade school, college, or university. Household wealth, calculated at the household level and with household data, was defined by an index on the basis of ownership of assets and housing characteristics. Primary outcomes were major cardiovascular disease (a composite of cardiovascular deaths, strokes, myocardial infarction, and heart failure), cardiovascular mortality, and all-cause mortality. Information on specific events was obtained from participants or their family.
FINDINGS: Recruitment to the study began on Jan 12, 2001, with most participants enrolled between Jan 6, 2005, and Dec 4, 2014. 160 299 (87·9%) of 182 375 participants with baseline data had available follow-up event data and were eligible for inclusion. After exclusion of 6130 (3·8%) participants without complete baseline or follow-up data, 154 169 individuals remained for analysis, from five low-income, 11 middle-income, and four high-income countries. Participants were followed-up for a mean of 7·5 years. Major cardiovascular events were more common among those with low levels of education in all types of country studied, but much more so in low-income countries. After adjustment for wealth and other factors, the HR (low level of education vs high level of education) was 1·23 (95% CI 0·96-1·58) for high-income countries, 1·59 (1·42-1·78) in middle-income countries, and 2·23 (1·79-2·77) in low-income countries (pinteraction<0·0001). We observed similar results for all-cause mortality, with HRs of 1·50 (1·14-1·98) for high-income countries, 1·80 (1·58-2·06) in middle-income countries, and 2·76 (2·29-3·31) in low-income countries (pinteraction<0·0001). By contrast, we found no or weak associations between wealth and these two outcomes. Differences in outcomes between educational groups were not explained by differences in risk factors, which decreased as the level of education increased in high-income countries, but increased as the level of education increased in low-income countries (pinteraction<0·0001). Medical care (eg, management of hypertension, diabetes, and secondary prevention) seemed to play an important part in adverse cardiovascular disease outcomes because such care is likely to be poorer in people with the lowest levels of education compared to those with higher levels of education in low-income countries; however, we observed less marked differences in care based on level of education in middle-income countries and no or minor differences in high-income countries.
INTERPRETATION: Although people with a lower level of education in low-income and middle-income countries have higher incidence of and mortality from cardiovascular disease, they have better overall risk factor profiles. However, these individuals have markedly poorer health care. Policies to reduce health inequities globally must include strategies to overcome barriers to care, especially for those with lower levels of education.
FUNDING: Full funding sources are listed at the end of the paper (see Acknowledgments).
OBJECTIVES: Our study used data from the most recent network meta-analysis (NMA) and local parameters to assess the cost effectiveness of non-statin agents in statin-treated patients with a history of CVD.
METHODS: A published Markov model was adopted to investigate lifetime outcomes: (1) number of recurrent CVD events prevented, (2) quality-adjusted life-years (QALYs) gained, (3) costs and (4) incremental cost-effectiveness ratios (ICERs) of proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i) and ezetimibe added to statin therapy. Event rates and effectiveness inputs were obtained from the NMA. Cost and utility data were gathered from published studies conducted in Thailand. A series of sensitivity analyses were performed.
RESULTS: Patients receiving PCSK9i and ezetimibe experienced fewer recurrent CVD events (number needed to treat [NNT] 17 and 30) and more QALYs (0.168 and 0.096 QALYs gained per person). However, under the societal perspective and at current acquisition costs in 2018, ICERs of both agents were $US1,223,995 and 27,361 per QALY gained, respectively. Based on threshold analyses, the costs need to be reduced by 97 and 85%, respectively, for PCSK9i and ezetimibe to be cost-effective.
CONCLUSIONS: Despite the proven effectiveness of PCSK9i and ezetimibe, the costs of these agents need to reduce to a much greater extent than in HICs to be cost-effective in Thailand.