Displaying all 10 publications

  1. Loke LT
    Dent J Malaysia Singapore, 1969 Oct;9(2):34-44.
    PMID: 4906531
    Matched MeSH terms: Cartilage/transplantation
  2. Saim L, Aminuddin BS, Munirah S, Chua KH, Izuddin Fahmy A, Fuzina NH, et al.
    Med J Malaysia, 2004 May;59 Suppl B:192-3.
    PMID: 15468883
    To date there is no optimal approach to reconstruct an external ear. However, advances in tissue engineering technologies have indicated that in vitro autologous elastic cartilage might be of great importance in the future treatment of these patients. The aim of this study was to observe monolayer expansion of auricular cartilage and to evaluate engineered cartilage using standard histochemical study.
    Matched MeSH terms: Cartilage/transplantation*
  3. Kojima K
    Med J Malaysia, 2004 May;59 Suppl B:32-3.
    PMID: 15468805
    Matched MeSH terms: Cartilage/transplantation*
  4. Gunarajah DR, Samman N
    J Oral Maxillofac Surg, 2013 Mar;71(3):550-70.
    PMID: 23422151 DOI: 10.1016/j.joms.2012.10.029
    To evaluate the reported use and outcomes of implant materials used for the restoration of post-traumatic orbital floor defects in adults.
    Matched MeSH terms: Cartilage/transplantation
  5. Boon LC, Nik-Hussein NN
    J Pedod, 1990;14(3):136-8.
    PMID: 2081129
    Various alloplastic and autogenous tissues have been used in attempts to restore facial height and reconstruct temporomandibular articulation. A case is presented where an ectodermal rib graft was used to reconstruct the temporomandibular joint after arthroplasty in a young child.
    Matched MeSH terms: Cartilage/transplantation
  6. Hashim ND, Lee SA, Jang SH, Moon IS
    PLoS One, 2020;15(10):e0241152.
    PMID: 33125420 DOI: 10.1371/journal.pone.0241152
    OBJECTIVES: Inlay butterfly cartilage tympanoplasty (IBCT) is a simple grafting technique. Endoscopy facilitates visualization by eliminating blind spots. We analyzed the outcomes of IBCT using both endoscopic and microscopic approaches, and assessed how trainees perceived the educational opportunities afforded.

    MATERIALS AND METHODS: Sixty patients who underwent IBCT were allocated to Group I (n = 30; microscopic IBCT) and Group II (n = 30; endoscopic IBCT) by the dates of their visits. Anatomical success was defined as an intact, repaired tympanic membrane; functional success was defined as a significant decrease in the air-bone gap. Postoperative discomfort was analyzed using a visual analog scale (VAS). Thirteen trainees completed structured questionnaires exploring anatomical identification and the surgical steps.

    RESULTS: The surgical success rates were 96.7% in Group I and 100% in Group II. We found no between-group differences in the mean decrease in the air-bone gap or the extent of postoperative discomfort. Significant postoperative hearing improvements were evident in both groups. The mean operative time was shorter when the microscopic approach was chosen (17.7±4.53 vs. 26.13±9.94 min). The two approaches significantly differed in terms of the identification of external and middle ear anatomical features by the trainees, and their understanding of the surgical steps.

    CONCLUSION: Both endoscopic and microscopic IBCT were associated with good success rates. The endoscopic approach facilitates visualization, and a better understanding of the middle ear anatomy and the required surgical steps and thus is of greater educational utility.

    Matched MeSH terms: Cartilage/transplantation*
  7. Ruszymah BH
    Med J Malaysia, 2004 May;59 Suppl B:30-1.
    PMID: 15468804
    Patient own fibrin may act as the safest, cheapest and immediate available biodegradable scaffold material in clinical 1 tissue engineering. This study investigated the feasibility of using patient own fibrin isolated from whole blood to construct a new human cartilage, skin and bone. Constructed in vitro tissues were implanted on the dorsal part of the nude mice for in vivo maturation. After 8 weeks of implantation, the engineered tissues were removed for histological analysis. Our results demonstrated autologous fibrin has great potential as clinical scaffold material to construct various human tissues.
    Matched MeSH terms: Cartilage/transplantation*
  8. Chua KH, Aminuddin BS, Fuzina NH, Ruszymah BH
    Med J Malaysia, 2004 May;59 Suppl B:7-8.
    PMID: 15468792
    The regulation roles of insulin-like growth factor-1 (IGF-1) with basic fibroblast growth factor (bFGF) and transforming growth factor beta 2 (TGFbeta2) in human nasal septum chondrocytes monolayer culture and cartilage engineering was investigated in this study. The role of IGF-1 with bFGF and TGFbeta2 was investigated by measuring chondrocyte growth kinetic and collagen genes expression. IGF-1 together with bFGF and TGFbeta2 promote cartilage tissue engineering, increase type II collagen expression and enhance the histological features of engineered cartilage.
    Matched MeSH terms: Cartilage/transplantation*
  9. Farah Wahida I, Aminuddin BS, Munirah S, Chua KH, Fuzina NH, Isa MR, et al.
    Med J Malaysia, 2004 May;59 Suppl B:190-1.
    PMID: 15468882
    This study was to assess collagen type II and collagen type I gene expression in tissue-engineered human auricular: cartilage formed via tissue engineering technique. Large-scale culture expansions were transformed into 3D in vitro construct and were implanted subcutaneously on the dorsal of athymic mice. After 8 weeks, explanted construct was processed in the same manner of native cartilage to facilitate cells for gene expression analysis. Isolated cells from in vivo construct demonstrated expression of type II collagen gene comparable to native cartilage. This study verified that tissue-engineered auricular cartilage expressed cartilage specific gene, collagen type II after in vivo maturation.
    Matched MeSH terms: Cartilage/transplantation
  10. Chua KH, Aminuddin BS, Fuzina NH, Ruszymah BH
    Med J Malaysia, 2004 May;59 Suppl B:194-5.
    PMID: 15468884
    We have previously formulated an optimized human chondrocytes growth medium based on 2% fetal bovine serum supplementation. For clinical usage, the animal serum must be replaced by patient own serum. We investigated the effects of human serum concentration for human nasal septum chondrocytes monolayer culture and cartilage reconstruction. Human serum demonstrated a dose dependent manner in promoting chondrocytes growth and cartilage engineering.
    Matched MeSH terms: Cartilage/transplantation*
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links